

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Elektronica en informatiesystemen

Ontwerp en implementatie van een mobiel sensorsysteem
voor het traceren van menselijke houding

Design and Implementation of a Mobile Sensor System
for Human Posture Tracking

Benoît Huyghe

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Elektrotechniek

Academiejaar 2010-2011

ISBN nummer:
NUR code: 959
Depot nummer:

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Elektronica en Infromatiesystemen

Promotoren: Prof. dr. ir. Jan Doutreloigne
Prof. dr. ir. Jan Vanfleteren

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Elektronica en Informatiesystemen
Centrum voor Microsysteemtechnologie (CMST)
Technologiepark 914-A
B-9052 Gent-Zwijnaarde, België

Tel.: +32-9-264.53.50
Fax.: +32-9-264.53.74

Dit werk kwam tot stand in het kader van een aspirantenmandaat van het
FWO-Vlaanderen (Fonds Wetenschappelijk Onderzoek – Vlaanderen).

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Elektrotechniek

Academiejaar 2010-2011

Dankwoord

Op 1 oktober 2007 begon ik er aan. Een doctoraat. Het zou 4 jaar duren en
het leek op dat ogenblik lang, heel lang. Maar achteraf is alles anders, de
jaren vlogen en het werk kreeg vorm. Voor ik het besefte was er een werkend
systeem, een tastbaar resultaat waarmee ik kon experimenteren en waarover
ik het boek heb geschreven dat u nu in uw handen houdt. Dit resultaat was
er uiteraard nooit gekomen zonder de hulp en steun van een veelheid aan
mensen.

Eerst en vooral dank ik graag mijn beide promotoren, Jan Doutreloigne en
Jan Vanfleteren. Elk op hun eigen manier waren ze steeds enthousiast over
de geboekte resultaten en lieten ze me de vrijheid om het onderzoek zelf te
sturen in welke richting dan ook. Hun eindeloze steun vertaalde zich dan ook
in een optimisme dat vaak groter was dan het mijne. Hun vertrouwen stelde
mij in staat dit onderzoek te voeren en uiteindelijk de titel van doctor the
behalen.

Onze voorzitter André Van Calster verdient mijn dank voor zijn bekommer-
nis om het lot van CMST, inclusief de perikelen met bureauruimte. Verder
ook voor zijn expertise op zo goed als alle vlakken, alsook voor tal van sociale
activiteiten zoals het jaarlijkse etentje en de legendarische barbecue.

Verschillende mensen hebben een bijdrage geleverd aan het uiteindelijke
resultaat en dienen hiervoor zeker en vast vermeld te worden. Nadine voor het
uitdenken en uitvoeren van een schitterende choreografie die leidde tot een
geslaagd experiment. Michiel van IPEM voor het gebruik van hun tracking
systeem en het leveren van het bijhorend videomateriaal. Ine, Veerle en Joeri
van de sporwetenschappen die ons graag ontvingen om tests uit te voeren met
hun optische opstelling en zich hierbij flink in het zweet werkten.

Naast de technische bijdragen ben ik de hele CMST ploeg enorm dankbaar
voor de opperbeste sfeer zowel op als naast de werkvloer. In het bijzonder
vemeld ik graag de designers voor de aangename ribbetjes events die talrijk
bijgewoond werden en de wekelijkse babbel die zowel Jan als elkaar op de
hoogte hield. Ook dank aan de bureaugenootjes, zowel zij die er van in het
begin bij waren, Thomas, Jeroen, Rik en David die samen met mij genoodzaakt
waren om de kleine Brody te bezetten, als de talrijke anderen die er na
de verhuis bijgekomen zijn, Jindrich, Tom, Amir, Sandeep, Sheila en Sanjeev.
Verder wil ik ook graag Ann bedanken voor het nalezen van dit boek toen de

ii

eerste hoofdstukken op hun plaats vielen, alsook Pietro voor zijn bereidheid om
in de jury te zetelen en mij de laatste paar jaar te helpen bij de ontwikkeling
van het systeem.

Naast de werkgerelateerde bijdrages zijn er ook een hele boel mensen
die mij op persoonlijk vlak heel nauw aan het hart liggen. Niet in het minst,
mijn beide ouders. Dankzij jullie was ik er in de eerste plaats letterlijk niet
geweest, en had ik dit nooit kunnen bereiken. De onvoorwaardelijke steun die
ik tijdens mijn volledige bestaan mocht ervaren is onbeschrijfelijk. Ook mijn
broer en zus, ik ben blij dat jullie er zijn.

In tijden van ontspanning kan ik ook steeds rekenen op de talrijke groep
mensen die ik tot mijn vrienden mag rekenen. Ik doe hier geen poging om
alle namen op te sommen, jullie weten wel wie jullie zijn. Bedankt voor alle
verjaardagsfeestjes, de instuif bij iedere verhuis, spelletjesavonden, snooker-
matchen, passieve en actieve voetbalbijeenkomsten, avonden op café, tripjes
en zelfs reizen naar waar-dan-ook, etentjes bij elkaar of op restaurant, con-
certbezoeken,... Kortom, dank voor alle plezante bijeenkomsten.

Tenslotte moet er nog één persoon speciaal vermeld worden. Eén persoon
die elke dag doet opfleuren, simpelweg door er te zijn. Liesbet, merci voor de
vele vreugdevolle dagen die we al samen hebben beleefd en voor al diegene
die er ongetwijfeld nog zullen komen.

Gent, november 2011

Benoît Huyghe

Table of Contents

Dankwoord i

Table of Contents iii

List of Figures ix

List of Tables xiii

List of Code Segments xvi

List of Acronyms xvii

Samenvatting xxiii

Summary xxvii

1 Introduction 1

1.1 Sensors . 1
1.2 Tracking Systems . 2

1.2.1 Mechanical Systems . 3
1.2.2 Optical Systems . 4
1.2.3 Magnetic Systems . 6
1.2.4 Acoustic Systems . 6
1.2.5 Inertial Systems . 7

1.3 Applications . 8
1.3.1 Animation . 8
1.3.2 Virtual Reality . 8
1.3.3 Biomechanical Analysis 9
1.3.4 Industrial Applications 10

1.4 Inertial Motion Tracking . 10
1.4.1 Inertial Sensors . 10
1.4.2 State of the Art . 12

1.4.2.1 Wireless Sensor Networks 12
1.4.2.2 Motion Tracking Sensor Nodes 14
1.4.2.3 Inertial Tracking Algorithms 14
1.4.2.4 Motion Tracking Suit 15

1.5 Scope and Goals . 15

iv Table of Contents

1.6 Outline . 17
1.7 Publications . 17
References . 19

2 Filter Design 27

2.1 Introduction . 27
2.2 Orientation of a Rigid Body . 28

2.2.1 Euler Angles . 28
2.2.1.1 Convention . 28
2.2.1.2 Rotation Matrices 29
2.2.1.3 Relation to Body Rates 30
2.2.1.4 Performance . 31

2.2.2 Quaternion . 31
2.2.2.1 Notation . 32
2.2.2.2 Operations . 32
2.2.2.3 Quaternions and Three Dimensional Rotation 34
2.2.2.4 Relation to body rates 35
2.2.2.5 Performance . 35

2.2.3 Conversion . 35
2.2.3.1 Euler Angles to Quaternion 36
2.2.3.2 Quaternion to Euler Angles 36

2.3 Kalman Filter . 37
2.3.1 System Model . 37
2.3.2 Filter Algorithm . 38

2.3.2.1 Prediction . 39
2.3.2.2 Correction . 39
2.3.2.3 Recursion . 40

2.3.3 Extended Kalman Filter 40
2.3.3.1 System Model 40
2.3.3.2 Linearisation 41
2.3.3.3 Filter Algorithm 41

2.3.4 Sigma Point Kalman Filters 42
2.3.4.1 The Sigma Point Approach 42
2.3.4.2 Filter Implementation 43
2.3.4.3 Performance . 47

2.3.5 Hybrid Kalman Filters 47
2.3.6 Adaptive Kalman Filters 48

2.4 Orientation Estimator Design . 48
2.4.1 Filter Architecture . 49

2.4.1.1 MARG Filter 49
2.4.1.2 MFG Filter . 49

2.4.2 Sensor Signals . 51
2.4.2.1 Sensor Output Model 51
2.4.2.2 Calibration . 51
2.4.2.3 Sensor Output Processing 54

Table of Contents v

2.4.3 Kalman Filter System Model 55
2.4.3.1 State Vector . 56
2.4.3.2 Process Model 56
2.4.3.3 Measurement Model 58
2.4.3.4 Linearisation 60

2.4.4 Orientation Estimation Procedure 62
2.4.4.1 Prediction . 62
2.4.4.2 Correction . 63

2.4.5 Adaptive Filtering . 64
2.5 Parameter Estimation . 65

2.5.1 Digital Pre-Filter . 65
2.5.1.1 Filter Concept 65
2.5.1.2 Sensor Output Filter Design 67

2.5.2 Kalman Filter Parameters 69
2.5.2.1 Measurement Noise Covariance 70
2.5.2.2 Process Noise Covariance 72
2.5.2.3 Feedback Gain 77

2.6 Filter Simulation . 79
2.6.1 Step Response . 79

2.6.1.1 Tilt Step . 79
2.6.1.2 Heading Step 81

2.6.2 Noise Response . 83
2.6.2.1 Simulated Noise 84
2.6.2.2 Real Noise . 85

2.6.3 Motion Disturbance . 88
2.6.3.1 Adaptive Filtering 90
2.6.3.2 Feedback Parameter 93

2.7 Conclusion . 96
References . 98

3 System Design 101

3.1 Introduction . 101
3.1.1 System Requirements . 101
3.1.2 Available Systems Overview 102

3.2 Hardware . 103
3.2.1 General System Layout 103

3.2.1.1 Sensor Node Build-up 104
3.2.1.2 Base Station Build-up 105

3.2.2 Second Generation . 105
3.2.2.1 Sensor Node 106
3.2.2.2 Base Station 108

3.2.3 Third Generation . 110
3.2.3.1 MFG Node . 110
3.2.3.2 MARG Node 111
3.2.3.3 Base Station 112

vi Table of Contents

3.2.4 Fourth Generation . 113
3.2.4.1 Flexible Board 113
3.2.4.2 UTCP . 115

3.3 Network Protocol . 119
3.3.1 Protocol Requirements 121
3.3.2 Protocol Framework . 122
3.3.3 Master Operation . 123
3.3.4 Slave Operation . 124
3.3.5 Dynamic Implementation 126
3.3.6 Additional Control Mechanisms 128
3.3.7 Base Station Operation 129
3.3.8 Extending Node Count 130
3.3.9 Node Current Consumption 131

3.3.9.1 Master Node 131
3.3.9.2 Slave Nodes 131
3.3.9.3 Dynamic Operation 133
3.3.9.4 Collision Detection 133

3.3.10 Protocol Performance . 136
3.3.11 Alternative Implementations 136

3.3.11.1 Third Generation MARG Nodes 137
3.3.11.2 Second Generation 137

3.4 Firmware Filter Implementation 138
3.4.1 Filter Choice . 139
3.4.2 Fixed Point Notation . 139

3.4.2.1 Format . 140
3.4.2.2 Multiplication 141
3.4.2.3 Square Root 143

3.4.3 Sensor Output Processing 146
3.4.3.1 Calibration . 146
3.4.3.2 Accelerometer 146
3.4.3.3 Magnetometer 146
3.4.3.4 Digital Filter 148

3.4.4 Kalman Filter Algorithm 148
3.4.4.1 Simplifications 149
3.4.4.2 Symmetric Matrices 150
3.4.4.3 Symmetric Inversion 151

3.4.5 Wireless Data Package 152
3.4.6 Current Consumption . 154
3.4.7 MARG Extension . 155

3.5 Conclusion . 156
References . 157

Table of Contents vii

4 Software 161

4.1 Introduction . 161
4.2 Application Overview . 162

4.2.1 Software Structure . 162
4.2.1.1 Welcome Window 162
4.2.1.2 Device Window 163
4.2.1.3 Calibration Window 164

4.2.2 Data Flow . 165
4.2.2.1 Data Collection 165
4.2.2.2 Network Class 166
4.2.2.3 Node Class . 167
4.2.2.4 Kalman Filter Class 167
4.2.2.5 Visualisation 167

4.3 Human Model . 168
4.3.1 Stickman Build-up . 169
4.3.2 Bone Offset . 171

4.3.2.1 Euler Angles 171
4.3.2.2 Quaternion . 172

4.3.3 Bone Corrections . 173
4.3.3.1 Free Bones . 174
4.3.3.2 Fixed Bones . 174
4.3.3.3 Single Plane Constraint Bones 175
4.3.3.4 Multiple Plane Constraint Bones 180

4.3.4 World Model . 184
4.4 Conclusion . 185
References . 186

5 Measurements 189

5.1 Introduction . 189
5.2 Individual Node Performance . 190

5.2.1 Linearity . 192
5.2.1.1 Heading . 192
5.2.1.2 Tilt . 195

5.2.2 Step Response . 195
5.2.2.1 Heading . 197
5.2.2.2 Tilt . 199

5.2.3 Angular Speed and Delay 200
5.2.3.1 Heading . 201
5.2.3.2 Tilt . 203

5.2.4 Embedded Filter . 205
5.2.4.1 Step Response 206
5.2.4.2 Angular Speed and Delay 208

5.2.5 MARG Filter . 209
5.2.5.1 Step Response 210
5.2.5.2 Angular Speed and Delay 212

viii Table of Contents

5.3 Full Body Tracking . 214
5.3.1 Dance Performance . 215
5.3.2 Various Movements . 219
5.3.3 Treadmill Exercises . 228

5.4 Conclusion . 232
References . 234

6 Conclusion & Outlook 235

6.1 General Discussion . 235
6.2 Future Work . 238

A Quaternion Decomposition 241

A.1 Swing-Twist Decomposition . 241
A.2 Z-Axis Twist . 241
A.3 Arbitrary Twist . 244

B Second Generation Firmware 247

B.1 Hardware . 247
B.2 I2C . 250
B.3 SPI . 251
B.4 Fixed Point . 252
B.5 Accelerometer . 253
B.6 Magnetometer . 254
B.7 Gyroscope . 258
B.8 Calibration . 260
B.9 RF Transceiver . 261
B.10 Main . 273

C Third Generation Firmware 281

C.1 Hardware . 281
C.2 I2C . 288
C.3 SPI . 290
C.4 Fixed Point . 291
C.5 Dynamic Protocol . 292
C.6 Accelerometer . 296
C.7 Magnetometer . 300
C.8 Calibration . 305
C.9 RF Transceiver . 309
C.10 Kalman . 314
C.11 Main . 322

List of Figures

1.1 A person equipped with a mechanical tracking system. 4
1.2 A subject being tracked by an optical system 5
1.3 Schematical view of a MEMS accelerometer implementation. . 11
1.4 Schematical view of a MEMS magnetometer implementation. . 12
1.5 Schematical view of a MEMS gyroscope implementation. . . . 13

2.1 Roll, pitch and yaw convention applied to an airplane. 29
2.2 Basic Kalman filter outline with two recursive steps. 40
2.3 Block diagram of the MARG type filter. 50
2.4 Block diagram of the MFG type filter. 50
2.5 Block diagram of accelerometer output processing. 55
2.6 Block diagram of magnetometer output processing. 55
2.7 Block diagram of gyroscope output processing. 56
2.8 Digital filter architecture comparison by frequency response. . 67
2.9 Power spectrum of accelerometer output noise. 68
2.10 Frequency response of the accelerometer pre-filter. 69
2.11 Power spectrum of magnetometer output noise. 70
2.12 Static accelerometer output capture of 50 s. 71
2.13 Static magnetometer output capture of 50 s. 72
2.14 Variance Q versus feedback τ , Euler case. 73
2.15 Variance Q on separate axes versus feedback τ , Euler case. . . 74
2.16 Variance Q versus feedback τ , quaternion case. 75
2.17 Static gyroscope output capture of 50 s. 76
2.18 Optimal feedback parameter estimate per Euler axis. 78
2.19 Step response of the Euler angle state filters. 80
2.20 Zoom of the step input and sigma point filter response. 80
2.21 Step response of the quaternion state filters. 81
2.22 Euler EKF step response versus feedback 82
2.23 Settling time of the EKF with Euler state versus τ 82
2.24 Tilt and heading step response of the Euler SPKFs. 83
2.25 Tilt and heading step response of the quaternion filters. 84
2.26 Euler filter simulated noise response variance versus feedback. 85
2.27 Euler EKF simulated and real noise response variance 86
2.28 Motion disturbed accelerometer signal. 88
2.29 Euler UKF output to motion disturbance 89

x List of Figures

2.30 Y-axis motion disturbance . 89
2.31 Z-axis motion disturbance . 90
2.32 Quaternion EKF output to motion disturbance 90
2.33 Mean square error on ψ versus ζ for the EKF 91
2.34 Mean square error on ψ versus ζ for the SPKFs 92
2.35 Mean square error on the quaternion versus ζ for the EKF . . 93
2.36 Mean square error on ψ versus τ for the EKF 94
2.37 Mean square error on ψ versus τ for the SPKFs 95
2.38 Tilt step settling time versus τ for the SPKFs 95

3.1 Block diagram of the standard sensor node build-up. 104
3.2 Block diagram of the standard base station build-up. 105
3.3 Second generation sensor node boards 106
3.4 Picture of an assembled second generation sensor node. 107
3.5 Picture of an assembled second generation base station. 109
3.6 Picture of an assembled third generation MFG sensor node. . 110
3.7 Picture of an assembled third generation MARG sensor node. 111
3.8 Picture of an assembled third generation base station. 112
3.9 Process flow of the flexible board technology. 114
3.10 Top view of a fourth generation flexible sensor node 115
3.11 Side view of a fourth generation flexible sensor node 115
3.12 Process flow of the UTCP technology embedding part. 117
3.13 Flexible boards for UTCP devices. 118
3.14 Fourth generation base board design for separate UTCPs . . . 119
3.15 Flexible board combining both UTCP devices. 119
3.16 Fourth generation base board design for a combined UTCP . . 120
3.17 Contents of the RF data package for MFG type nodes 123
3.18 Contents of the base station data package. 123
3.19 Flowchart of the master sensor node operation. 124
3.20 Flowchart of a slave sensor node operation. 125
3.21 Flowchart of a dynamic node operation. 126
3.22 Flowchart of the base station operation. 130
3.23 Master node current consumption 132
3.24 Current consumption during normal operation. 133
3.25 Current consumption during takeover 134
3.26 Current consumption during master conflict 135
3.27 Current consumption during slave conflict 135
3.28 Current consumption second generation 138
3.29 Contents of the RF data package for the embedded filter . . . 154
3.30 Current consumption embedded filter 155

4.1 Screen capture of the welcome window. 163
4.2 Screen capture of the calibration window. 164
4.3 Software data flow diagram. 166
4.4 Stickman bones tree structure. 170

List of Figures xi

4.5 Stickman before and after offset correction 172
4.6 Single plane constraint visualisation. 175
4.7 Single plane constraint correction. 177
4.8 Stickman during single plane constraint swing correction . . . 179
4.9 Stickman during single plane constraint twist correction 180
4.10 Multiple plane constraint visualisation. 181
4.11 Multiple plane constraint correction. 182
4.12 Stickman during multiple plane constraint swing correction . . 183

5.1 Rotational stage and controller from Newport. 190
5.2 Measurement setup with the rotational stage. 191
5.3 Stepping test output sequence for the Euler type UKF. 193
5.4 Linear regression stepping test of heading 194
5.5 Linear regression residual on heading. 194
5.6 Linear regression with calibration errors 195
5.7 Linear regression stepping test of tilt 196
5.8 Linear regression residual on tilt. 196
5.9 Heading step response of the Euler type filters. 197
5.10 Heading step response of the Euler and Quaternion filters. . . 199
5.11 Tilt step response of the Euler and Quaternion filters. 200
5.12 Filter output delay for heading rotations. 202
5.13 Mean absolute error for heading rotations 202
5.14 Absolute error standard deviation for heading rotations 203
5.15 Euler UKF versus rotational stage for heading rotations 204
5.16 Filter output delay for tilt rotations. 205
5.17 Mean absolute error for tilt rotations 205
5.18 Absolute error standard deviation for tilt rotations 206
5.19 Heading step response of the embedded filter 207
5.20 Tilt step response of the embedded filter 208
5.21 Embedded and software filter output delay during rotation. . . 209
5.22 Mean absolute error for the embedded filter 210
5.23 Absolute error standard deviation for the embedded filter . . . 210
5.24 Heading step response of the MARG filter 211
5.25 Tilt step response of the MARG filter 212
5.26 MFG and MARG filter output delay during rotation. 213
5.27 Mean absolute error for the MARG filter 214
5.28 Video and stickman snapshots during leg swing 216
5.29 Video and stickman snapshots during groundwork 217
5.30 Optical system stickman visualisation 218
5.31 Right upper leg orientation angles during test 1. 222
5.32 Left upper leg orientation angles during test 2. 224
5.33 Lower torso orientation angles during test 3. 225
5.34 Right upper arm orientation angles during test 4. 226
5.35 Left lower leg orientation angles during test 6. 227
5.36 Left upper arm orientation angles during test 7. 228

xii List of Figures

5.37 Roll on lower left leg during test 8 229
5.38 Left lower leg orientation angles. 231
5.39 Lower left leg sensor readings magnitude 232

List of Tables

2.1 Euler SPKFs noise response variance at τ = 0 86
2.2 Quaternion filters noise response variance at τ = 0 87
2.3 Euler filters pre-filtered noise response variance at τ = 0 . . . 87
2.4 Quaternion filters pre-filtered noise response variance at τ = 0 87

3.1 Second generation sensor node boards dimensions and weights. 106

4.1 Cone top angles and axis directions 184

5.1 Quaternion type filters settling time to a heading step. 198
5.2 Filter settling time to a tilt step. 199
5.3 Maximum angular speed for heading rotations 201
5.4 Embedded and software filter settling time. 207
5.5 Maximum angular speed for the embedded filter 208
5.6 MFG and MARG filter settling time. 211
5.7 List of various movements executed 219
5.8 Mean absolute error during various movements 221

List of Code Segments

3.1 Fixed point format . 141
3.2 Fixed point multiplication function 142
3.3 Fixed point square root through floating point 143
3.4 Fixed point recursive square root calculation 144
3.5 Fixed point inverse square root 145
3.6 Accelerometer output conversion to fixed point format 147
3.7 Magnetometer output conversion to fixed point format 148
3.8 Symmetric matrices . 150
3.9 Cholesky decomposition . 152
3.10 Triangular matrix inversion . 153

B.1 Hardware.h . 247
B.2 Hardware.c . 248
B.3 I2C.h . 250
B.4 I2C.c . 251
B.5 SPI.h . 251
B.6 SPI.c . 252
B.7 FixedPoint.h . 252
B.8 FixedPoint.c . 252
B.9 Acc.h . 253
B.10 Acc.c . 253
B.11 Mag.h . 254
B.12 Mag.c . 254
B.13 Gyr.h . 258
B.14 Gyr.c . 258
B.15 Calibration.h . 260
B.16 Calibration.c . 260
B.17 CYWUSB693x.h . 261
B.18 CYWUSB693x.c . 271
B.19 Auto.c . 273

C.1 Hardware.h . 281
C.2 Hardware.c . 283
C.3 I2C.h . 288
C.4 I2C.c . 289
C.5 SPI.h . 290

xvi List of Code Segments

C.6 SPI.c . 290
C.7 FixedPoint.h . 291
C.8 FixedPoint.c . 291
C.9 Dynamic.h . 292
C.10 Dynamic.c . 292
C.11 AccIO.h . 296
C.12 Acc.h . 298
C.13 Acc.c . 298
C.14 MagIO.h . 300
C.15 Mag.h . 301
C.16 Mag.c . 301
C.17 Calibration.h . 305
C.18 Calibration.c . 305
C.19 nRF2401IO.h . 309
C.20 nRF2401.h . 310
C.21 nRF2401.c . 311
C.22 Kalman.h . 314
C.23 Kalman.c . 314
C.24 Auto.c . 322
C.25 KalmanAuto.c . 329

List of Acronyms

A

AC Alternating Current
ADC Analogue to Digital Convertor
AKF Adaptive Kalman Filter
API Application Programming Interface

B

BAN Body Area Network
BCB Benzocyclobutene

C

CDKF Central Difference Kalman Filter
CLR Common Language Runtime
CMST Centre for Microsystems Technology
CPU Central Processing Unit
CRC Cyclic Redundancy Check

D

DAC Digital to Analogue Convertor
DC Direct Current
DCO Digitally Controlled Oscillator
DOF Degrees Of Freedom

xviii List of Acronyms

E

EEG Electroencephalogram
EKF Extended Kalman Filter

F

FPU Floating Point Unit

G

GUI Graphical User Interface

H

HCI Host Controller Interface
HWM Hardware Multiplier

I

IC Integrated Circuit
I2C Inter-Integrated Circuit
ID Identification
IEEE Institute of Electrical and Electronics Engineers
IMU Inertial Measurment Unit
IP Internet Protocol
IPEM Institute for Psychoacoustics and Electronic Music
ISM Industrial, Scientific and Medical
ISR Interrupt Service Routine

J

JTAG Joint Test Action Group

List of Acronyms xix

K

KF Kalman Filter

L

LDO Low Dropout
LED Light Emitting Diode
LoS Lign of Sight
LPM Low Power Mode

M

MAC Media Access Control
MARG Magnetic, Angular Rate and Gravitational
MEMS Microelectromechanical System
MFG Magnetic Field and Gravitational
ML Maximum Likelyhood

O

OpenGL Open Graphics Library

P

PC Personal Computer
PDA Personal Digital Assistant

Q

QoS Quality of Service

xx List of Acronyms

R

RF Radio Frequency
RISC Reduced Instruction Set Computer
RMS Root Mean Square
RX Receive

S

SN Sensor Network
SoC System on a Chip
SP Sigma Points
SPI Serial Peripheral Interface
SPKF Sigma Points Kalman Filter

T

TDMA Time Division Multiple Access
TX Transmit

U

UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol
UKF Unscented Kalman Filter
USB Universal Serial Bus
USCI Universal Serial Communication Interface
UTCP Ultra Thin Chip Package
UV Ultraviolet

V

VB Visual Basic

List of Acronyms xxi

W

WBAN Wireless Body Area Network
WDT Watchdog Timer
WSN Wireless Sensor Network

Samenvatting

De reconstructie van menselijke houding en het traceren van bewegingen kan
voor vele applicaties een meerwaarde betekenen. Bewegingen van acteurs
kunnen worden opgenomen en later gebruikt worden om een digitaal perso-
nage te animeren zodat een realistische visualisatie wordt bekomen. Het is
een onmisbare technologie in toepassingen met virtuele realiteit gezien de
handelingen van de gebruiker moeten getraceerd worden om interactiviteit in
de omgeving in te bouwen. Door atleten te volgen tijdens het uitoefenen van
hun sport kan de efficiëntie van hun bewegingen geanalyseerd worden en het
risico op kwetsuren worden ingeschat en beperkt. Artsen kunnen door bio-
mechanische analyse van patiënten in revalidatie bepalen welke oefeningen
moeten worden uitgevoerd voor een beter en sneller herstel.

De combinatie van een steeds snellere evolutie in de ontwikkeling van
microsensoren en de opkomst van draadloze sensor netwerken als een gedis-
tribueerde oplossing heeft ertoe geleid dat inertiaalsensoren bruikbaar worden
voor het traceren van oriëntatie. Sensor nodes voorzien van accelerometers,
magnetometers en gyroscopen leveren drie dimensionale metingen die toela-
ten om driftvrije absolute oriëntatie te bepalen. Door het menselijke lichaam
te benaderen door een set van starre structuren die onderling verbonden zijn
door gewrichten kan de houding gereconstrueerd worden wanneer elk van de
individuele lichaamsdelen voorzien wordt van een sensor node.

Het complementaire karakter van de sensoren wordt bij inertiële traceer-
systemen gebruikt om absolute oriëntatie te berekenen. Eerst wordt het sig-
naal van de gyroscopen geïntegreerd om een gegist bestek te verkrijgen van
de oriëntatie. Kleine systematische fouten zullen echter snel leiden tot drift
op deze schatting. Daarom wordt een correctie toegepast gebaseerd op de
metingen van de accelero- en magnetometer. Deze sensoren worden immers
verwacht om respectievelijk de gravitatieversnelling en het aardmagnetisch
veld te meten. Beiden kunnen gezien worden als een statische referentie
die gebruikt kan worden om de initiële schatting te corrigeren. Het bronloze
karakter van inertiële traceersystemen is hun grootste pluspunt. Terwijl het
bereik van optische systemen beperkt is tot de oppervlakte waar de camera’s
voldoende zicht op hebben en magnetische systemen enkel bruikbaar zijn waar
het gegenereerde veld voldoende sterk is, wordt het bereik van inertiaalsys-
temen enkel beperkt door de draadloze communicatie.

In dit werk wordt de volledige ontwikkeling van een inertieel traceersys-
teem zonder gyroscopen toegelicht. Een traceringsalgoritme dat toelaat ori-

xxiv Samenvatting

ëntatie te schatten van sensormetingen behept met ruis wordt geïntroduceerd.
Het gehele systeemontwerp bestaande uit de ontwikkeling van zowel hardware
als ingebedde software wordt besproken gaande van de keuze voor de compo-
nenten, lay-out van het bord, een draadloos protocol op maat en het inbedden
van het schattingsalgoritme. Computer software die toelaat om de gerecon-
strueerde menselijke houding in real time te visualiseren en een methode om
anatomisch incorrecte houdingen te corrigeren op basis van een vereenvoudigd
model van de gewrichten worden toegelicht. Uiteindelijk wordt aan de hand
van een rotationele positioneringseenheid de traceringsperformantie van een
individuele node kwantitatief geanalyseerd en de functionaliteit van het ge-
hele systeem wordt geverifieerd met experimenten waar een persoon volledig
wordt gevolgd.

In hoofdstuk 2 wordt een grondig overzicht gegeven van Euler hoeken en
quaternionen als representatiemiddel voor drie dimensionale oriëntatie en de
Kalman filter met al zijn varianten wordt geïntroduceerd als een algoritme
om de informatie van verschillende sensoren te combineren. Zowel de uit-
gebreide als sigma punt filterarchitectuur wordt toegepast op het probleem
gebruik makende van zowel Euler hoeken als quaternionen als voorstellings-
wijze. Om de performantie van de filters te verbeteren bij de afwezigheid van
informatie over de hoeksnelheid worden terugkoppeling en adaptieve ruisco-
variantie toegevoegd. Alle parameters van de filters worden geschat gebruik
makende van data afkomstig van een traceersessie met een optisch systeem
zodat een adequaat model van het probleem wordt verkregen. Een derde orde
invers Chebychev filter wordt eveneens voorgesteld om hoog frequente ruis
op de uitgangssignalen van de sensoren te verminderen. Simulaties die de
kenmerken van het schattingsalgoritme testen en toelaten om de adaptieve
parameters te schatten worden aangebracht op het einde van het hoofdstuk.
Het stapantwoord illustreert dat de filters zoals verwacht anders reageren op
plotse veranderingen in tilt en koers gezien de Z-as samenvalt met de vector
van het gravitatieveld. Ruis simulaties bevestigen dat de digitale voorfilter de
invloed van hoog frequente ruis op de schattingen vermindert. Ten slotte kan
de efficiëntie van de adaptieve aanpak in de filters bepaald worden aan de
hand van simulaties waar een sinusoïdaal stoorsignaal wordt toegevoegd aan
de uitgang van de accelerometer.

Hoofdstuk 3 behandelt het systeemontwerp bestaande uit zowel hardware
als ingebedde software. De hardware kant bevat een overzicht van alle gene-
raties van traceersystemen die ontwikkeld werden doorheen de voorbije jaren.
Ieder ontwerp introduceert een nieuw aspect dat bijdraagt tot de finale functio-
naliteit. De eerste generatie legt de basis van de sensor node architectuur die
gebruikt wordt om een volledig operationeel sensor netwerk te bouwen met de
tweede generatie. De derde generatie introduceert een laag vermogenverbruik
en de mogelijkheid om het netwerk uit te breiden met meer nodes, terwijl in de
vierde en laatste generatie vooral wordt gelet op het comfort van de gebrui-
ker door gebruik te maken van geavanceerde bord- en verpakkingstechnieken.
Het deel over de ingebedde software handelt zowel over een volledig plug-

Samenvatting xxv

and-play, draadloos ad hoc netwerk protocol en een implementatie van het
oriëntatie schattingsalgoritme. Het protocol gebruikt een hiërarchie met een
meester en verschillende slaven waar data om beurten verzonden wordt. Het
ontvangen van een pakket van de meester wordt door de slaven gebruikt om
te bepalen wanneer zij zelf hun data mogen verzenden. Door de rol van een
sensor node slechts te bepalen bij het opstarten en slaven zelf te laten zoeken
naar een beschikbaar tijdslot ontstaat een dynamische implementatie. Geba-
seerd op de resultaten van de performantie verkregen in hoofdstuk 2, wordt de
quaternion uitgebreide Kalman filter gekozen voor implementatie in ingebedde
software. Hiertoe wordt een digitaal formaat met vaste komma geïntroduceerd
waarvan de vermenigvuldiging wordt geïmplementeerd door gebruik te maken
van de hardware vermenigvuldigingsmodule en de vierkantswortel benaderd
wordt met de methode van Newton. De implementatie van de filter maakt ver-
der maximaal gebruik van de voordelen van symmetrische matrices: enkel de
beneden driehoek wordt berekend en inversie wordt bekomen door Cholesky
decompositie. Uiteindelijk zijn nodes in staat om een schatting te berekenen
van de oriëntatie in de beschikbare termijn van 10 ms en kan één basisstation
data van maximaal 19 nodes van de derde generatie ontvangen terwijl elk van
hen slechts een gemiddeld stroomverbruik van 6.5 mA laat noteren.

De ontwikkeling van computer software wordt behandeld in hoofdstuk 4,
beginnende met een overzicht van de structuur van het programma en de
gegevensstroom erdoorheen. Belangrijker echter is het tweede deel van dit
hoofdstuk waar een menselijk model wordt toegelicht dat gebruikt wordt om
anatomisch onmogelijke houdingen te corrigeren naar haalbare houdingen.
Een boomstructuur wordt gebruikt om recursief een stokfiguur op te bouwen
bestaande uit verschillende botten die overeenkomen met lichaamsdelen en de
zogenaamde swing-twist parameterisatie wordt geïntroduceerd om de limieten
te beschrijven die eigen zijn aan elk van de gewrichten tussen de botten van
het menselijk lichaam. Botten worden onderverdeeld in vier categorieën op
basis van de bewegingsvrijheid die toegestaan wordt door het gewricht dat
hen verbindt met hun ouder. Vrije botten worden nooit gecorrigeerd en ne-
men eenvoudigweg de oriëntatie van hun toegekende sensor node over, terwijl
vaste botten de oriëntatie van hun ouder overnemen. Het gewricht tussen een
bot met correctie in één enkel vlak en zijn ouder wordt gemodelleerd als een
scharnier zoals het geval is voor ellebogen en knieën. Botten met correctie in
meerdere vlakken worden gekarakteriseerd door een bolgewricht zoals bijvoor-
beeld de schouders of heupen. Ten slotte wordt een model voor de omgeving
beschreven waar het bot met het laagste eindpunt op een volledig vlakke vloer
wordt geplaatst.

In hoofdstuk 5 wordt de performantie van het systeem geanalyseerd met
een rotationeel positioneringssysteem en een optisch traceersysteem. Eerst
worden de lineariteit, het stapantwoord, de maximale snelheid en de vertra-
ging van het algoritme bepaald door de schattingen te vergelijken met de
hoek van het positioneringssysteem. Zowel tilt als koers worden beschouwd
gezien de verschillen die blijken uit de simulaties in hoofdstuk 2. Nadien

xxvi Samenvatting

worden dezelfde metingen herhaald met de ingebedde versie van de filter en
met een schattingsalgoritme dat wel gebruik maakt van gyroscopen. Uiter-
aard zal de informatie over de hoeksnelheid er voor zorgen dat de respons
van dit laatste filter consistenter en sneller is, maar dat meer tijd nodig is
om de correcte eindwaarde te bereiken. In het laatste deel van dit hoofdstuk
wordt het systeem getest in experimenten waar een volledig persoon wordt
getraceerd en een optisch systeem als referentie wordt gebruikt. Deze expe-
rimenten onthullen dat schattingen van het inertiële systeem globaal gezien
goed overeenkomen met de optische resultaten zolang de stoorsignalen door
beweging op de accelerometer data beperkt blijven.

Summary

Human posture reconstruction and motion tracking is of interest for many
different applications. In animation, captured motion sequences from actors
can be mapped to a digital character in order to obtain a realistic visualisation.
It is a key technology for building virtual reality since the actions of the user
must be captured such that an interactive synthetic environment can be built.
Captures of performing athletes allow the analysis of the efficiency of their
actions and provide them with feedback for achieving even better results. In
rehabilitation, biomechanical analysis enables physicians to determine which
exercises should be executed for a better and faster recovery.

The combination of the increasingly fast evolution in the development of mi-
cromachined sensors and the rise of wireless sensor networks as a distributed
solution has allowed inertial sensors to become a fast emerging technology
for orientation tracking. Sensor nodes equipped with accelerometers, magne-
tometers and gyroscopes supply three dimensional readings that can be used
to determine driftfree absolute orientation. By approximating the human body
by a set of rigid structures interconnected by joints, posture reconstruction
is made possible when each of the individual bodyparts is equipped with a
sensor node.

Inertial tracking systems use the complementary nature of the sensors to
determine absolute orientation. First, the gyroscope signal is integrated in
order to obtain a dead reckoning estimate of the orientation. Since small
bias errors will quickly result in drift errors in the estimate, a correction is
applied based on the accelerometer and magnetometer readings. The first of
these sensors is expected to measure gravity while the latter senses earth’s
magnetic field. Both are static references that can be used to correct the
initial estimate. The sourceless nature of inertial tracking systems forms their
main asset. Where the range of optical systems is bound by the area that is
adequately covered by the cameras and magnetic systems can only be used
where the generated field is strong enough, the range of inertial systems is
only limited by the wireless communication link.

In this work, the entire design of a gyroless inertial motion tracking system
is outlined. A tracking algorithm is presented that estimates the orientation
from noisy sensor readings. The entire system design, covering both hard-
ware and embedded software development is discussed including component
choice, board layout, a custom wireless protocol and estimation algorithm em-
bedding. Computer software allowing realtime visualisation of human posture

xxviii Summary

and a method for correcting anatomically incorrect postures using a simplified
joint model are presented. Finally, the single node tracking performance is
analysed quantitatively using a rotational stage and the entire system func-
tionality is verified with full body tracking experiments.

In chapter 2, a thorough overview is given of Euler angles and quaternions
as a means for representing three dimensional orientation and the Kalman
filter with all of its variations is introduced as a sensor fusion algorithm. Sev-
eral flavours of the filter are applied to the problem at hand based on either
an extended or a sigma point architecture and using either Euler or quater-
nion representation. Additional features, such as feedback and adaptive noise
covariance are added to improve the performance of the filters under the ab-
sence of angular rate information. Using real life motion captures from an
optical tracking system, all parameters of the filters are estimated to ensure
that an adequate modeling of the problem is obtained. A third order inverted
Chebychev filter is also proposed in order to reduce the amount of high fre-
quency output noise of the sensors. Simulations of the estimation algorithm
are presented in the final part of the chapter in order to test its character-
istics and determine an estimate for the adaptive parameters in the system.
Step response simulations show that the filter behaves differently for tilt and
heading steps as is expected due to the coincidence of the Z-axis and the
gravity vector. Noise response simulations confirm that the sensor output dig-
ital pre-filter reduces the influence of the high frequency noise on the filter
output. And finally, motion disturbance simulations, where a disturbing si-
nusoidal signal is added to one of the accelerometer outputs, determine the
efficiency of the adaptive filtering approach.

Chapter 3 deals with the system design comprising both hardware and
embedded software. On the hardware side, an overview of all generations of
motion tracking systems that have been developed throughout the years is
given. Each of the designs introduces a new aspect that provides added value
compared to the previous system. The first generation lays out the basics of
the sensor node architecture which is used to obtain a fully operational sen-
sor network in the second generation. The third generation introduces lower
power consumption and the possibility to extend the network with more nodes,
while the fourth and final generation concentrates on unobtrusiveness using
advanced board and packaging techniques. On the embedded software side,
both a fully plug and play, wireless ad hoc network protocol is introduced and
an implementation of the orientation tracking filter is discussed. The protocol
uses a hierarchy of a master and several slaves where data is transmitted
using a turn based approach. The master acts as a synchronisation beacon
for the slaves who time their transmission relative to the reception of master
packages. A dynamic implementation results when the role of the sensor nodes
is determined at runtime and slaves choose their own timeslot according to its
availability. Based on the performance determined in chapter 2, the quater-
nion type extended Kalman filter is selected to be implemented in embedded
software. To this extend, a fixed point number format is introduced, multipli-

Summary xxix

cation is implemented using the hardware multiplier and the square root is
approximated based on the Newton method. The filter implementation makes
maximal use of the advantages of symmetrical matrices: only lower triangular
parts are calculated and inversion is completed using Cholesky decomposition.
Finally, nodes are capable of calculating the orientation estimate within the
available 10 ms timeframe and a single base station accommodates a maximum
of 19 third generation nodes while each of them consumes an average current
of 6.5 mA.

The computer software development is handled in chapter 4 which starts
with an overview of the structure and dataflow of the program. More important
however, is the second part of this chapter where the human model is outlined
that is used to correct anatomically impossible postures into more feasible
ones. A tree structure is used to recursively build a stickman consisting of
several bones corresponding to bodyparts and the swing-twist parameterisa-
tion is introduced to describe the limits that are inherent to each of the joints
between the bones in the human body. Bones are divided into four categories
depending on the amount of freedom allowed by the joint that connects them
to their parent. Free bones are never corrected and simply copy the orienta-
tion from their associated sensor node, while fixed bones copy their parent’s
orientation. The joint between a single plane constraint bone and its parent is
modeled as a hinge as is the case for elbows and knees. Multiple constraint
bones are characterised by a ball-and-socket type joint as e.g. shoulders and
hips. Finally, a world model is described where the bone with the lowest
endpoint is clipped to an entirely flat floor.

In chapter 5, the performance of the system is analysed using a rotational
stage and an optical tracking system. First, the linearity, step response,
maximum speed and delay of the tracking filter is determined by comparing
the estimations with the angular position of a rotational stage. Both the tilt
and heading case are considered given the difference found in the simulations
of chapter 2. Afterwards, these performance measures are compared to the
ones obtained with the embedded version of the filter and using an estimation
filter with gyroscopes. Naturally, angular rate information makes that the
latter displays a more consistent and faster response, yet take more time to
reach the correct final value. In the final part of this chapter, the system
is tested in full body tracking experiments where an optical tracking system
is used as golden standard. The experiments reveal that the output of the
inertial system generally corresponds well to the optical output as long as
motion disturbance in the accelerometer data is limited.

1
Introduction

The introductory chapter outlines the frame in which the research for this
work is situated and gives an overview of the existing tracking systems and
technologies. An attempt is made to list some of the numerous applications
that benefit from this type of technology.

1.1 Sensors

In a modern day environment, devices called sensors may be found everywhere
[1]. The name covers an extremely large family of instruments that are capable
of measuring a certain physical quantity and converting it into a signal which
can be read by an observer. The measured quantity should be of interest to
the user and can be almost anything ranging from temperature [2], pressure [3]
or speed [4] to oxygen level [5], toxic particle count [6] or earthquake intensity
[7]. The format of the output signal needs to be adapted to the considered
observer. In case of a human observer, a visual representation is needed while
an observer consisting of another device might be able to handle electrical or
mechanical signals.

More and more, sensors are built into everyday products which contribute
to a higher life standard. Cars have evolved from fully mechanical machines
to electronically controlled integrated systems where additional features are
added continuously to increase safety and comfort on one side and meet more
stringent environmental restrictions on the other. In this evolution, sensors
play a crucial role in providing information for these new control systems

2 Introduction

[8]. Accelerometers determine if airbags need to be deployed [9], gas sensors
allow selective catalytic reduction systems to control the emission of exhaust
fumes [10], parking aid and collision avoidance systems use information from
radar sensors to detect the presence of nearby objects or cars [11], the list is
virtually endless [12].

The integration of an increasing number of sensors has finally lead to the
concept of sensor networks. Many small microsystems, commonly referred to
as sensor nodes, are networked in order to provide distributed information to
control a system. These sensor nodes consist of the actual sensor and some
additional components that allow read-out, data processing, external commu-
nication and perhaps even immediate feedback [13]. With the rise of wireless
communication, the nodes quickly adopted a wireless interface emphasising
their mainly mobile nature. The elimination of wires also meant that a local
power supply needed to be present, which in turn implies that power availabil-
ity is limited. Given these characteristics, dedicated wireless protocols need
to be designed to meet the strict requirements of ultra-low power consumption
and restricted bandwidth.

Nowadays, sensor networks have found their way to many applications in
various fields. In disaster management [14], sensor nodes can be deployed
from rescue helicopters to obtain valuable information on the current ground
situation. In structural monitoring [15], the state of buildings or bridges can
be assessed from sensor readings of nodes embedded inside the structure or
attached to its surface. In public transport [16], doors or passenger seats
can be monitored easily by sensor nodes. In meteorology and environmental
monitoring [17], several parameters can be measured and communicated to
monitoring stations.

Aside from the integration of sensors into objects or the environment, the
human body is also targeted as a possible host for sensor networks. So-called
Body Area Networks (BANs) consist of many different sensors measuring vital
functions and are centered around a mobile device, mostly a Personal Digi-
tal Assistant (PDA) or smartphone, which operates as an access point to the
outside world [18]. Naturally, an important aspect of these BANs is unobtru-
siveness, since the system must be virtually invisible to the user [19]. Vital
signs that are mostly monitored with BANs include heart pulse rate, blood
pressure, glucose level and brain activity [20]. Of special interest for this work
however, is the use of a BAN for tracking human motion and posture.

1.2 Tracking Systems

Many different types of tracking systems have been developed using a variety
of sensor types and physical principles [21]. Since the systems have mostly

Tracking Systems 3

been designed with a specific application in mind, their performance char-
acteristics are tailored and they may not be suited for a different purpose.
Most systems measure a certain signal and reference this to the quantity that
must be measured, namely the orientation or position of an object. By ap-
proximating the human body by a set of rigid structures interconnected by
joints, full body tracking can be obtained by tracking each of these rigid links
individually.

A clear distinction must be made between orientation and position tracking.
In the first, only the relative orientation referenced to a certain zero direction
is determined. In the latter, the location of an object referenced to a certain
position in space is traced. Orientation tracking applied to humans leads to
human posture, while position tracking yields the location of the person in the
room. Some tracking systems are capable of providing both types of tracking,
while others can only supply one of them due to technical restrictions.

In general, tracking systems are mostly divided in five classes: mechanical,
optical, magnetic, acoustic or inertial [22]. Additionally, systems may also
utilise a combination of technologies and form some kind of hybrid class system
where the weakness of one type of system may be compensated by another
[23]. Although this thesis handles the design of an inertial tracking system, the
working principle of each of the five basic types is discussed here, as well as
the advantages and disadvantages associated to it. This allows to understand
the limits of each of these systems and how inertial tracking inherently differs
from other methods.

1.2.1 Mechanical Systems

In mechanical motion capture systems, the user is equipped with an exo-
skeleton consisting of metal or plastic rods [24]. This exo-skeleton is capable
of moving with the user and directly measuring the body joint angles using
goniometers within the links between the rods. The measured data can then
be stored locally or transmitted via a wireless link to a processing unit where
a kinematic algorithm recombines all data to full body posture [25]. Since the
system is carried around by the user, no location tracking is provided unless
an additional system is present. Figure 1.1 displays a picture of a person
equipped with the Gypsy 7 mechanical system designed by Animazoo [26].

The advantages of mechanical tracking include a relatively low cost and
occlusion free tracking output since each joint is measured individually. If
the system is equipped with a wireless interface, the range of motion is only
limited by the range of the interface. Whether or not the system can be used
in realtime also depends on the presence of an interface. Tracking more than
one person simply requires more exo-skeletons.

A clear disadvantage is the fact that the exo-skeleton limits the freedom of

4 Introduction

Figure 1.1: A person equipped with a mechanical tracking system.

movement of the test person. Rolling over the floor or holding objects e.g. are
no longer an option. Also, moving around with the system equipped might
hamper the user and result in the user adapting to the system. This in turn
leads to less natural behaviour while the purpose of the tracking system is to
capture normal motions.

Since the system is placed outside of the body, the center of the go-
niometers never corresponds to the joint origin. Moreover, human joints never
correspond to actual hinges or spherical joints, which makes aligning the go-
niometers to the body very difficult. This is especially true for complex multiple
Degrees Of Freedom (DOF) joints as e.g. shoulders. Furthermore, due to dif-
ferences in anthropological build, these systems need to be recalibrated for
different users.

1.2.2 Optical Systems

A variety of different systems may be categorised as optical trackers. The
common property among them is that they perform tracking by sensing some
sort of light using cameras. The most popular version tracks the location of
markers placed on the subject’s body with multiple cameras. The markers may
be either passive, reflecting light generated by separate sources, or active,
by transmitting a certain amount of light themselves. The position of the
markers in space is calculated by triangulating the coordinates in each two
dimensional capture of the working volume from the cameras. Figure 1.2
shows a picture of a person equipped with markers and a computer generated
character adopting the posture of the tracked person. In this case, the markers

Tracking Systems 5

are spherical reflectors and the light that is used originates from infrared Light
Emitting Diodes (LEDs) that are placed next to the cameras.

Figure 1.2: The posture of the person on the left is captured using an optical system
and mapped to a computer generated character on the right.

Full body tracking with markers is obtained by placing at least three
markers on hinge locations. The spacial angle between the markers can then
be retrieved when the location of the markers in space is known [27]. In
order to allow the system to distinguish different bodyparts, unique patterns
of markers can be used and associated to a certain bodypart in software [28].
This principle may also be applied to track multiple subjects at once.

This type of technology makes a good effort at being unobtrusive since
the markers are almost invisible to the user and allow them to move freely.
However, the biggest advantage is found in the high degree of accuracy that
can be obtained. Furthermore, not only orientation, but also absolute position
is known since the orientation is derived from position.

Several disadvantages are also associated with these systems. First of all,
a certain minimum number of cameras need to have Lign of Sight (LoS) to a
marker, in order for the software to reconstruct the location of this marker [29].
Whenever this condition is not met, data loss may occur. Second, the tracking
space in which tracking can be performed correctly is limited, in fact only a
region of a couple of square meter can be covered properly. Third, setting up
the equipment is a tedious process where all cameras must be set up to face
the tracking space from different angles and an extensive calibration procedure
must be executed. Finally, since the entire estimation is based on measuring
light intensity, additional light sources can disturb the measurements.

Lately, much effort is also put in markerless optical tracking. Here, camera
images are analysed using pattern recognition algorithms in order to track a
certain object or bodypart. These systems require a large amount of process-
ing power but remove the need to equip the test subject with markers or a
specialised suit at the cost of reduced accuracy. An example of this type of

6 Introduction

system is Kinect developed by Microsoft for their game console, the XBox 360
[30].

1.2.3 Magnetic Systems

Magnetic tracking requires the user to wear several magnetic sensors that
measure a set of artificially generated magnetic fields [31]. The sensors con-
sist of three mutually orthogonal coils bearing an induced current due to a
changing magnetic field according to electromagnetic theory. The fields are
in turn generated by a source also consisting of three mutually perpendicular
coils. A full measurement thus results in nine induced currents that can be
used to calculate the orientation of the sensor and also the position relative
to the emitter since the magnitude of the field is proportional to the distance
of the sensor to the source [32].

In general, the source coils may be driven by either Direct Current (DC) or
Alternating Current (AC). When DC is used, each coil is driven at a different
moment in time in order to distinguish the source of the induced current in the
sensor [33]. Also, the effect of the earth magnetic field must be removed by
calibration, since this is also a constant field. Using AC allows to differentiate
between the different source coils by using different frequencies that can be
separated at the sensor side [34].

The advantages of magnetic systems include occlusion free tracking since
the human body is almost invisible for the applied magnetic fields and the fact
that these systems are relatively cheap compared to optical tracking systems.

Since magnetic fields are used for tracking, the downsides of these sys-
tems are immediately related to them. The strength of such a field is inversely
proportional to the square of the distance between the source and the sensor.
Hence the tracking volume is limited to the size of a small room. Also distur-
bances gain more interest when the distance increases since the power of the
useful field is already weakened. Hence the accuracy of the systems depends
on the tracking volume [35].

1.2.4 Acoustic Systems

In acoustic systems, the location of an acoustic sensor is determined by either
time-of-flight of sound pulses and triangulation [36] or by comparing the phase
of the received signal with the phase of a reference signal [37]. The advantage
of the first is found in the absolute measure it provides. The latter uses the
difference between the current and the previous measurement to determine
change in position which is then integrated. The initial position must in this
case be known or be determined by other means and drift might occur as a
problem.

Tracking Systems 7

The accuracy, range and update rate of these systems entirely depend on
the physics of sound [38]. This implies a larger range for acoustic systems
compared to magnetic ones [39], but a lower sampling frequency due to the
limited speed of sound. Clearly, the sensors require LoS to the sound source
to provide correct estimates and reflections of sound on walls or objects can
disturb the performance.

1.2.5 Inertial Systems

With the recent advances in miniaturisation of micromachined sensors, iner-
tial tracking systems have rapidly gained interest. Tracking human posture
using these types of systems requires applying sensor nodes on each body
segment that needs to be traced [40]. Each of the nodes is equipped with sen-
sors measuring angular rate, linear acceleration and magnetic field in three
dimensions and is commonly referred to as a Magnetic, Angular Rate and
Gravitational (MARG) sensor node.

A naive approach of determining orientation information from MARG nodes
is to simply integrate the angular rate signal. This dead reckoning approach
can in fact be used with very large and expensive gyroscopes, yet with cheap
micromachined sensors the resulting orientation will quickly exhibit drift due
to small bias errors [41]. Therefore, continuous corrections are applied to
the orientation based on the measurements supplied by the other sensors.
Accelerometers can be used to correct tilt errors based on measurements of
earth’s gravity and magnetometers sensing earth’s magnetic field supply ad-
ditional information concerning the heading.

If accelerometers would not exhibit any noise or bias, position tracking
would be possible by double integration of the signal after removing the con-
tribution of gravity. However, given the errors on the output signal, drift will
clearly make this approach impossible for extended periods of time as the error
grows quadratically. On short term however, reports have been made of suc-
cessfully applying double integration by estimating bias drift during phases of
zero velocity [42]. This way, a position estimate relative to the starting point
can be given.

The biggest advantage of inertial tracking is found in the sourceless nature
of the systems. No external source of any kind is needed to provide orientation
estimates, since the earth’s gravity and magnetic field are omnipresent. This
implies that the range of the system is only limited by the communication to
the backend and the precision is independent of the location of the subject.
Compared to mechanical systems, the main advantage is the fact that sensor
nodes can be designed to be very small, whereas the rods with goniometers
must essentially cover the entire body.

The downsides of the system include the susceptibility to magnetic inter-

8 Introduction

ference from active electromagnetic sources as e.g. cell phones and shielding
of the magnetic field by metals. Some effort is put in trying to make inertial
systems less prone to magnetic disturbance by temporarily relying more on the
other sensors [43]. Generally, the accuracy of inertial systems is regarded to
be lower than e.g. optical ones, since all estimations are based on the output
of very low cost sensors.

1.3 Applications

Numerous application may benefit from human posture reconstruction technol-
ogy or orientation tracking in general. In the following, a far from exhaustive
list of applications is given.

1.3.1 Animation

Perhaps the most well known application is found in animation. Actors are
equipped with technology that allows either their physical movements or facial
expressions to be captured digitally. Later on, this data is used to animate a
digital avatar such that it mimics the actor’s actions.

Obviously, animation is widely used in film industry and examples of the
use of motion tracking are not hard to find: Gollum in The Lord of the Rings,
Davy Jones in Pirates of the Caribbean and the Na’vi from Avatar are com-
monly known. Entirely computer animated movies also benefit, think of the tap
dancing sequences in Happy Feet and the fact that a single actor may pose
for several characters as was the case for Tom Hanks in The Polar Express.

The technique is also applied in video games for animating certain actions
that must be performed by the digital character in order to obtain a realistic
animation. Typical examples are found in action games where fighting se-
quences are taken from martial arts specialists and sports games where the
movements of actual athletes are used.

Although the use of motion capture has many advantages including the
mentioned possibility to capture a single actor for multiple characters, creating
realistic animations in situations that are too dangerous to actually film and
the fact that costumes e.g. no longer need to be made, there is also an objection
to it. Contrary to the case of Beowulf for example, where a digital version of
the actors was built to their image, one could hire cheap, unknown actors to
control the actions of a digital version of famous actors.

1.3.2 Virtual Reality

Taking animation one step further leads to the concept of virtual reality where
a user is able to interact with a synthetic environment. This powerful concept

Applications 9

provides mankind with a different view to the world and allows to think about a
whole new way of how society should function. In education, difficult concepts
may be explained using visualisations and actually experiencing the effects.
Training of athletes in difficult or fundamentally different environments is made
possible without having to travel large distances or exposing them to possible
hazards. Coworkers are able to work together on a problem even if they
are physically separated from each by hundreds of kilometers reducing travel
costs. The entertainment industry can build worlds that only existed in their
imagination and people could actually walk around in them and experience it
with all their senses.

In order to provide full immersion into a virtual world, the ability to in-
teract with the synthetic environment is a key factor. Most of the interaction
is achieved by simple body motion, which in turn leads to changes in the
environment that can be observed through each of our five senses. Hence,
the first requirement for interaction is the ability to measure or capture body
posture and movement. When expanding the concept to multiple users at once
in a wide area environment, inertial sensing is probably the only technology
allowing virtual reality to be implemented.

1.3.3 Biomechanical Analysis

The analysis of human motion during various tasks or exercises is of interest
for different fields. In the medical world, motion capture helps in both re-
habilitation after an injury or stroke [44] and diagnosis where the detection
of oncoming problems is of major interest [45]. In sport science, accurately
tracking athletes offers insight in the effectiveness of the execution and the
potential risk of injuries.

Aside from orientation estimation, inertial sensors themselves may already
be used in medical applications. Accelerometer signals for example are used
to measure breathing activity [46] or monitor the possibility of occurrence of
the sudden infant death syndrome [47]. Accelerometry has also been applied
to improve the detection of epileptic seizures [48].

The mobile nature of inertial sensing also opens the path to home moni-
toring of patients. This way, therapists can determine if the patient is actually
performing the home exercises that have been prescribed. Furthermore, infor-
mation from the tracking system can provide much faster and more accurate
feedback allowing the therapist to alter the exercises such that process of
rehabilitation is accelerated or adjusted to the needs of that specific patient.

10 Introduction

1.3.4 Industrial Applications

Aside from tracking human motion, orientation tracking in general also has
many applications for monitoring objects. In robotics, feedback of the ori-
entation is crucial for stabilisation of walking robots. This principle is also
widespread among hobbyists building miniature planes and helicopters in or-
der to avoid their work from crashing down. But also the originals may benefit
from tracking: ship and plane movements, as well as race car roll can be mon-
itored.

1.4 Inertial Motion Tracking

Given their proven track record and years of development, optical systems
are generally regarded as the golden standard in human motion analysis.
Although their accuracy is very high, the limitations of these systems mostly
require tracking sessions to take place in specialised laboratories due to the
long setup time and expensive nature of the systems. This approach does not
allow captures of everyday life activities to be taken in a regular environment
as many of the applications listed in the previous section might require. In this
regard, the portability of the inertial systems resulting from their sourceless
nature is clearly an important asset. Furthermore, with the vast amount of
effort that is put in the development of better Microelectromechanical System
(MEMS) sensors, inertial tracking has a bright future ahead.

1.4.1 Inertial Sensors

An accelerometer consists of a very small mass element that is suspended by
spring-like structures. Acceleration causes the mass to exhibit displacement
from its neutral position, which is mostly measured using capacitive sensing
techniques. Given the fact that a mass is used to measure acceleration explains
the fact that an accelerometer measures earth’s gravity whenever it is in a
stationary position.

A practical implementation of the sensing principle is shown in figure 1.3.
The sensor consists of a solid mass that is suspended on either side with a
spring to an anchor contact. The mass bears an electrode comb with fingerlike
structures that fit into complementary fingers of a fixed comb. When the
mass is subjected to accelerations, the distance between the fingers changes
proportionally according to Hooke’s law, which is in turn sensed capacitively
by the comb electrodes [49].

Several types of magnetometers exist, though integrated sensors are com-
monly based on the Hall effect [50]. The Hall effect dictates that when a

Inertial Motion Tracking 11

Anchor

Spring

MassFixed
Comb

Moving
Comb

Figure 1.3: Schematical view of a MEMS accelerometer implementation.

magnetic field is present perpendicular to a current bearing conductor, a volt-
age is generated across this conductor in the direction perpendicular to both
the magnetic field and the current. This voltage also reflects the polarity of
the magnetic field. Strictly speaking no mechanical parts are present in these
sensors, yet the signals originating from Hall sensors are very low and require
proper amplification, which indicates that extra electronics are also integrated
aside from the sensor itself.

Recently, MEMS magnetometers have been built using the Lorentz force.
According to electromagnetic theory, a current bearing wire placed in a mag-
netic field experiences a force perpendicular to both the current and the field:

F Lorentz = I l × B, (1.1)

where I represents the current, l the length of the conductor, B the mag-
netic field strength and × denotes the vector cross product. A practical imple-
mentation is shown in figure 1.4. The coil shaped conductor bears a constant
current and is prone to a Lorentz force when an out-of-plane magnetic field
is present. A field directed outward causes both sides of the coil to move
closer to the sensing electrodes, an inward field causes a force in the opposite
direction. The displacement of the wires then serves as a measure for the
magnetic field strength [51].

MEMS gyroscopes are miniature versions of vibrating structure gyroscopes

12 Introduction

I I

Anchor

Sensing Electrode

Figure 1.4: Schematical view of a MEMS magnetometer implementation.

and use Coriolis acceleration to detect angular speed. Mostly tuning fork
type vibrating bodies are used. When this tuning fork is set to vibrate at
its fundamental frequency and is subjected to an external rotation about its
axis, the Coriolis effect introduces an out-of-plane sinusoidal movement with
an amplitude proportional to the angular rate of rotation.

Figure 1.5 shows an implementation of such a tuning fork gyroscope. Both
masses are set to oscillate by the driving electrodes and display in plane vi-
brations in antiphase in the direction of the arrows drawn on them. When the
structures are subjected to a rotation around the vertical axis denoted by Ω,
movement is introduced by the Coriolis effect where the masses start vibrat-
ing out-of-plane. This displacement is then measured by sensing electrodes
located underneath the masses [52].

1.4.2 State of the Art

At the time of writing, several research institutions, as well as commercial
companies have reported activities related to inertial motion tracking. The
work ranges from the design of sensor network protocols to entire motion
capturing suits.

1.4.2.1 Wireless Sensor Networks

The increasing number of applications for sensor networks is reflected in the
amount of different protocols that have been designed. This evolution results
directly from the fact that each application requires a different kind of sensor

Inertial Motion Tracking 13

Anchor

Mass

Driving
Electrode

Ω

Sensing
Electrode

Figure 1.5: Schematical view of a MEMS gyroscope implementation.

network since other performance characteristics are stressed. Various param-
eters need to be taken into account when designing a sensor network and a
wireless protocol [53]:

• Range: Some applications only require a very short range of several
meters, while others will demand ranges of up to several kilometers.

• Scale: Sensor networks can range from a couple of sensor nodes up to
vast amounts of several thousands.

• Latency: Depending on the application, data might need to reach the
base station within a very short time or a certain delay could be allowed.

• Loss: Loss of data could be tolerated in some applications, while others
demand 100 % of the collected data to be delivered at the base station.

• Dynamics: Nodes might be moving around while measuring, requiring
the network to adapt data routing.

Much research effort is put in building powerful protocols that can be
used to network many sensors in a harsh and widespread environment [54].
As a result, the focus of the protocols lies in the ad hoc nature where dynamic

14 Introduction

reorganisation is important and the ability to support multi-hop communication
in a mesh network while maintaining a low power consumption is desired [55].
Also, the presented protocols are mostly designed for generic sensor networks,
independent of the actual sensor that is used [56].

1.4.2.2 Motion Tracking Sensor Nodes

In sensor node hardware, a distinction must be made between generic sensor
network platforms and specifically designed motion tracking nodes.

General purpose sensor nodes allow the user to choose which sensors
need to be incorporated on the nodes. Examples of this approach found in
the research field are TinyNode from Lausanne in Switzerland [57] and UC
Berkeley’s Telos [58] and from a more commercial angle, Sun SPOT [59].
Although this offers an extensive amount of freedom and enables the design to
be sold to several end users for different applications, the final system is not
the most efficient solution. In general, sensors are added by connecting several
sensor boards to a main board containing the processing and communications
unit. The result is a multiboard sensor node where large connectors are
required for interconnection between the boards. Furthermore, given the broad
scope of these platforms, the nodes implement too much functionality for any
given task. Therefore, the current consumption will always be higher compared
to tailor made sensor nodes. The advantage however, is that quick prototyping
and a short time to market can be achieved and the cost is logically lower.

Sensor nodes designed specifically for motion tracking are found in both
the commercial market and the research world. Restricting the overview to
wireless devices, the MTw by XSens [60], Intersense’s InertiaCube [61] and
the ProMove-2 from Inertia Technology [62] are only a couple of the motion
tracking nodes available on the market. Each of them is equipped with sensors
for measuring acceleration, angular rate and magnetic field in three dimen-
sions, has an on board rechargeable battery and is capable of transmitting
data wirelessly to a custom base station. Similar solutions have been built in
research facilities, two examples are Orient from the University of Edinburgh
[63] and WIMS from Tyndall National Institute [64]. The main advantage of
these systems is their compact size compared to the commercial ones.

1.4.2.3 Inertial Tracking Algorithms

The inertial tracking algorithms can essentially be divided into two major
groups: the estimators based on a Kalman filter [65] and the ones based on
complementary filtering [66]. All of them exploit the complementary nature
of the inertial sensors where gyroscopes are more suited for fast rotations
of short duration and accelerometer and magnetometer signals are used to
capture low frequency variations allowing driftless estimation.

Scope and Goals 15

Since the introduction of this technique, some interesting variations have
been elaborated in order to improve the performance. A first point of focus is
reducing the sensitivity of the system to disturbances. By including an esti-
mate of the magnetic disturbance in the sensor model, Roetenberg et al. have
managed to reduce the output error significantly during magnetic interference
[43]. Young et al. determined that the main source of errors in human mo-
tion tracking is due to linear accelerations and by using a body model, these
accelerations may be estimated [67]. Harada et al. have focused on the com-
pensation of both magnetic and motion disturbance by switching models in
the Kalman filter [68].

Other researchers have attempted to reduce the amount of sensors needed
for tracking. Luinge et al. describe a method for estimating the orientation
of the upper arm with respect to the lower arm using only accelerometers
and gyroscopes. The resulting heading error between the two segments is
corrected using knowledge about the limitations of the elbow joint [69]. Yun et
al. suggest to perform tracking without the use of a gyroscope. The proposed
algorithm sequentially determines the orientation quaternion and only uses
accelerometer values to determine tilt such that magnetic interference only
influences the heading [70].

1.4.2.4 Motion Tracking Suit

There are two companies offering full body motion tracking suits: the MVN
from XSens [71] and the IGS by Animazoo [72]. Both systems use multiple
tracking nodes that are connected through a wired network to a wireless
communication module. The entire system is embedded in a Lycra suit that
comes in different sizes. Batteries power the nodes and the wireless module
allowing continuous functionality for about three hours.

Although these suits are very well suited for human motion tracking, this
is the only application the system can be used for. When thinking of tracking
animals or objects for example, they are no longer usable. Also, since the
location of the sensors on the human body is fixed, these suits are not fit
for applications where precise knowledge of the distributed orientation of a
bodypart is required. In rehabilitation for example, accurate information of the
spinal orientation in any given point may be of interest.

1.5 Scope and Goals

The final objective of this work is to create an inertial tracking system based
on a wireless sensor network topology. Given that a mobile application is
targeted, wearability and user comfort should be maximised, while power con-
sumption and cost should be minimised. Primarily targeting human motion

16 Introduction

capturing, the system should consist of at least 15 nodes considering this is
the amount of bodyparts that is mostly used for modeling [73]. Furthermore, a
sensor sampling rate of 100 Hz is targeted assuming the bandwidth of human
movement can be restricted to 5 Hz and applying the rule of thumb that calls
for 20 times oversampling of noisy data [66].

An important step in minimising the current consumption is trying to remove
as much components as possible without compromising the functionality. One
of the goals of this work is to determine the performance that can be achieved
when omitting the gyroscope in the sensor nodes. Since these devices con-
sume much more current compared to accelerometers and magnetometers, and
driftless orientation can in fact be determined from these sensors alone, the
functionality is not jeopardised while the reduction in current consumption
should be significant. However, since the angular rate data supplies valuable
information about high frequency movements, it is expected that removing the
gyroscope will have some effect on the eventual performance of the system
when looking at the dynamic behaviour.

Aside from the gyroscope, the wireless interface contributes the biggest
part to the consumption. As this component is clearly needed to fulfill the
required functionality, a protocol should be used where the amount of trans-
ferred information is restricted to the absolute minimum. On the other hand,
the fact that the system must work in realtime implies that the delay should
be very low and data cannot be accumulated over time. This indicates that
the application of sensor networks for inertial tracking requires a very specific
protocol that is mainly data driven. Therefore, the design of a protocol able
to handle the transmission of sensor data from at least 15 different nodes at
a rate of 100 Hz with minimal delay and current consumption forms another
goal.

In order to satisfy the wearability requirement, the hardware design should
be approached with caution. With the increasingly fast evolving market of
MEMS sensors, angular rate sensors are now becoming available as three
dimensional integrated devices. As this is only a recent development, all of
the sensor nodes listed in the state of the art consist of multiple boards that are
interconnected in a perpendicular fashion. The result is a multiboard sensor
node with a considerable height. This was an additional reason to attempt
to create a gyroless tracking system as it would allow the design of single
board nodes. A flat solution would indeed offer a higher degree of comfort to
the user. The goal for the hardware design has not changed however, nodes
should consist of a single board solution and size should be minimised as
much as possible.

Outline 17

1.6 Outline

Chapter two starts with an introduction to mathematical representations of
orientation and the Kalman filter as a sensor fusion algorithm. Then, both
principles are used to design an orientation tracking algorithm where only
accelerometer and magnetometer data is utilised for estimation. Finally, the
optimal values for the parameters used in the algorithm are estimated and
simulations are performed to verify the functionality and to determine the
performance.

The system design is handled in the third chapter. The different hard-
ware designs that have been made throughout the course of this thesis are
outlined and the design of future generations is shown. A fully dynamic, ad
hoc wireless protocol is conceived to reliably transfer information from the
sensor nodes to the backend and its principles are implemented on different
hardware generations. The final section of this chapter covers the embedded
implementation of the tracking estimator designed in the second chapter.

The fourth chapter describes the real time software aspects of the system.
The first part gives an overview of the software structure and the data flow
through the program. The second part handles the implementation of a human
model for the stickman visualisation in order to correct anatomically incorrect
postures to feasible ones.

Chapter five covers the measurement results of conducted experiments.
The performance of a single node is analysed by comparing the estimated
orientation with the angular position of a rotational stage to which the node
is attached. Afterwards, the functionality of the entire system is validated
through several full body tracking experiments.

Finally, a general conclusion is formulated in chapter six.

1.7 Publications

Papers published in an SCI-journal

• B. Huyghe, H. Rogier, J. Vanfleteren and F. Axisa, Design and Manufac-
turing of Stretchable High-Frequency Interconnects, IEEE Transactions
on Advanced Packaging, Vol. 31(4), November 2008, pp. 802-808.

Papers submitted to an SCI-journal

• B. Huyghe, J. Doutreloigne and J. Vanfleteren, A Wireless Sensor Net-
work Protocol for an Inertial Motion Tracking System, Wireless Personal
Networks, Submitted - Under Review.

18 Introduction

• B. Huyghe, P. Salvo, J. Doutreloigne and J. Vanfleteren, Feasibility
Study and Performance Analysis of a Gyroless Orientation Tracker,
IEEE Transactions on Instrumentation and Measurement, Submitted -
Under Review.

Papers presented at international conferences listed as P1-publications

• B. Huyghe, J. Doutreloigne and J. Vanfleteren, 3D Orientation Tracking

Based on Unscented Kalman Filtering of Accelerometer and Magne-

tometer Data, Proceedings of the IEEE Sensors Applications Sympo-
sium, February 2009, New Orleans, Louisiana, USA, pp. 148-152.

• B. Huyghe, J. Vanfleteren and J. Doutreloigne, Design of Flexible, Low-
Power and Wireless Sensor Nodes for Human Posture Tracking Aiding

Epileptic Seizure Detection, Proceedings of the 8th IEEE Conference
on Sensors, October 2009, Christchurch, New Zealand, pp. 1963-1966.

Papers presented at international conferences without proceedings

• J. Vanfleteren, F. Axisa, D. Brosteaux, F. Bossuyt, E. De Leersnyder,
T. Vervust, B. Huyghe, J. Missinne, R. Verplancke and M. Gonzalez,
Elastic electronic circuits and systems using Moulded Interconnect De-

vice (MID) technology, Abstracts of the MRS Spring Meeting, 2008,
San Francisco, California, USA.

Papers presented at national conferences

• B. Huyghe, Human body posture tracking using flexible, wireless and
low-power sensor nodes , 10th FirW PhD Symposium, Faculty of Engi-
neering, Ghent University, December 2009.

References 19

References

[1] J. Wilson. Sensor Technology Handbook. Elsevier, December 2004.

[2] L. Michalski, K. Eckersdorf, J. Kucharski, and J. McGhee. Temperature

Measurement. John Wiley & Sons, London, UK, 2001.

[3] R.P. Benedict. Fundamentals of Temperature, Pressure and Flow Mea-

surements. Wiley, September 1984.

[4] W.-C. Wang. A Motor Speed Measurement System Based on Hall Sensor.
In Ran Chen, editor, Intelligent Computing and Information Science, vol-
ume 134 of Communications in Computer and Information Science, pages
440–445. Springer Berlin Heidelberg, 2011.

[5] J.G. Webster. Design of Pulse Oximeters. IOP Publishing, Bristol, UK,
1997.

[6] P. Metilda, K. Prasad, R. Kala, J.M. Gladis, T. Prasada Rao, and G.R.K.
Naidu. Ion Imprinted Polymer Based Sensor for Monitoring Toxic Ura-
nium in Environmental Samples. Analytica Chimica Acta, 582(1):147–153,
2007.

[7] S. Stein and M. Wysession. An Introduction to Seismology, Earthquakes
and Earth Structure. Blackwell Publishing, 2003.

[8] P. Kleinschmidt and F. Schmidt. How Many Sensors Does a Car Need?

Sensors and Actuators A: Physical, 31(1–3):35–45, 1992.

[9] K.H. Kim, J.S. Ko, Y.-H. Cho, K. Lee, B.M. Kwak, and K. Park. A Skew-
Symmetric Cantilever Accelerometer for Automotive Airbag Applications.
Sensors and Actuators A: Physical, 50(1–2):121–126, 1995.

[10] R. Moos, R. Müller, C. Plog, A. Knezevic, H. Leye, E. Irion, T. Braun,
K.-J. Marquardt, and K. Binder. Selective Ammonia Exhaust Gas Sensor
for Automotive Applications. Sensors and Actuators B: Chemical, 83(1–
3):181–189, 2002.

[11] M. Klotz and H. Rohling. 24 GHz Radar Sensors for Automotive Ap-

plications. In 13th International Conference on Microwaves, Radar and
Wireless Communications, volume 1, pages 359–362, 2000.

[12] W.J. Fleming. Overview of Automotive Sensors. Sensors Journal, IEEE,
1(4):296–308, December 2001.

[13] G. Meijer. Smart Sensor Systems. Wiley, September 2008.

20 References

[14] S. Sana and M. Matsumoto. A Wireless Sensor Network Protocol for Dis-
aster Management. In Proceedings of Information, Decision and Control,
pages 209–213, Adelaide, Australia, February 2007.

[15] X. Ning, S. Rangwala, K.K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-
dan, and D. Estrin. A Wireless Sensor Network for Structural Monitoring.
In Proceedings of the 2nd International Conference on Embedded Net-
worked Sensor Systems, pages 13–24, Baltimore, MD, USA, 2004.

[16] S. Kootkar and Z. Al-Ars. Design and Implementation of Reliable Wire-
less Sensor Networks - A Case Study in Commuter Trains. In Proceed-
ings of the ProRISC Workshop, pages 201–204, Veldhoven, Netherlands,
November 2007.

[17] J.D. Lundquist, D.R. Cayan, and M.D. Dettinger. Meteorology and Hy-
drology in Yosemite National Park: A Sensor Network Application. In
Proceedings of the 2nd International Conference on Information Process-
ing in Sensor Networks, pages 518–528, Palo Alto, CA, USA, 2003.

[18] E. Monton, J.F. Hernandez, J.M. Blasco, T. Herve, J. Micallef, I. Grech,
A. Brincat, and V. Traver. Body Area Network for Wireless Patient Mon-

itoring. Communications, IET, 2(2):215–222, February 2008.

[19] B. Huyghe, H. Rogier, J. Vanfleteren, and F. Axisa. Design and Manufac-

turing of Stretchable High-Frequency Interconnects. IEEE Transactions
on Advanced Packaging, 31(4):802–808, November 2008.

[20] B. Gyselinckx, C. Van Hoof, J. Ryckaert, R.F. Yazicioglu, P. Fiorini, and
V. Leonov. Human++: Autonomous Wireless Sensors for Body Area Net-

works. In Proceedings of the IEEE Custom Integrated Circuits Conference,
pages 13–19, September 2005.

[21] A. Menache. Understanding Motion Capture for Computer Animation.
Elsevier, 2011.

[22] G. Welch and E. Foxlin. Motion Tracking: No Silver Bullet, But a Re-

spectable Arsenal. Computer Graphics and Applications, IEEE, 22(6):24–
38, November 2002.

[23] T. Auer and A. Pinz. Building a Hybrid Tracking System: Integration

of Optical and Magnetic Tracking. In Proceedings of the 2nd IEEE and
ACM International Workshop on Augmented Reality, pages 13–22, 1999.

[24] I.E. Sutherland. A head-mounted three dimensional display. In Proceed-
ings of the Joint Computer Conference, Part I, AFIPS ’68 (Fall, part I),
pages 757–764, New York, NY, USA, 1968. ACM.

References 21

[25] J. Yang, D. Bai, S. Bai, Y. Li, and S. Wang. Design of Mechanical Structure

and Tracking Control System for Lower Limbs Rehabilitative Training

Robot. In International Conference on Mechatronics and Automation,
pages 1824–1829, August 2009.

[26] Animazoo. Gypsy 7. http://www.animazoo.com/motion-capture-systems/
gypsy-7-motion-capture-system/.

[27] A.G. Kirk, J.F. O’Brien, and D.A. Forsyth. Skeletal Parameter Estimation

from Optical Motion Capture Data. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, volume 2, page 1185, June
2005.

[28] N. Miyata, M. Kouchi, T. Kurihara, and M. Mochimaru. Modeling of

Human Hand Link Structure from Optical Motion Capture Data. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, volume 3, pages 2129–2135, September 2004.

[29] L. Herda, P. Fua, R. Plankers, R. Boulic, and D. Thalmann. Skeleton-

based Motion Capture for Robust Reconstruction of Human Motion. In
Proceedings of the Conference on Computer Animation, pages 77–83,
2000.

[30] Microsoft. Kinect for Xbox 360. http://www.xbox.com/en-GB/kinect/.

[31] F.H. Raab, E.B. Blood, T.O. Steiner, and H.R. Jones. Magnetic Position

and Orientation Tracking System. IEEE Transactions on Aerospace and
Electronic Systems, AES-15(5):709–718, September 1979.

[32] J.S. Day, D.J. Murdoch, and G.A. Dumas. Calibration of Position and

Angular Data from a Magnetic Tracking Device. Journal of Biomechanics,
33(8):1039–1045, 2000.

[33] M. Schneider and C. Stevens. Development and Testing of a New Mag-

netic Tracking Device for Image Guidance. In SPIE Medical Imaging
2007: Visualization and Image-Guided Procedures, pages 6509–6517,
February 2007.

[34] Y. Liu, Y. Wang, D. Yan, and Y. Zhou. DPSD Algorithm for AC Mag-

netic Tracking System. In IEEE Symposium on Virtual Environments,
Human-Computer Interfaces and Measurement Systems, pages 101–106,
July 2004.

[35] G. Zachmann. Distortion Correction of Magnetic Fields for Position Track-

ing. In Proceedings of the International Conference on Computer Graphics,
pages 213–220, 251, June 1997.

http://www.animazoo.com/motion-capture-systems/gypsy-7-motion-capture-system/
http://www.animazoo.com/motion-capture-systems/gypsy-7-motion-capture-system/
http://www.xbox.com/en-GB/kinect/

22 References

[36] E. Foxlin, M. Harrington, and G. Pfeifer. Constellation: a Wide-Range

Wireless Motion-Tracking System for Augmented Reality and Virtual Set

Applications. In Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, pages 371–378, New York, NY, USA,
1998. ACM.

[37] J.H. Kim, J.S. Hur, H.R. Lee, D.S. Kim, I.S. No, and K.M. Kim. Perfor-

mance Enhancement of Target Tracking for an Underwater Vehicle Using

Synthetic Sensor Technique. In MTS/IEEE Conference and Exhibition
OCEANS, volume 3, pages 1693–1696, 2001.

[38] Q. Wang, W.-P. Chen, R. Zheng, K. Lee, and L. Sha. Acoustic Target

Tracking Using Tiny Wireless Sensor Devices. In Proceedings of the 2nd
International Conference on Information Processing in Sensor Networks,
pages 642–657, Berlin, Heidelberg, 2003. Springer-Verlag.

[39] F. Packi, F. Beutler, and U.D. Hanebeck. Wireless Acoustic Tracking

for Extended Range Telepresence. In International Conference on Indoor
Positioning and Indoor Navigation, pages 1–9, September 2010.

[40] R. Zhu and Z. Zhou. A Real-Time Articulated Human Motion Tracking

using Tri-Axis Inertial/Magnetic Sensors Package. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 12(2):295–302, June
2004.

[41] H. Chung, L. Ojeda, and J. Borenstein. Accurate Mobile Robot Dead-

Reckoning with a Precision-Calibrated Fiber-Optic Gyroscope. IEEE
Transactions on Robotics and Automation, 17(1):80–84, February 2001.

[42] X. Yun, E.R. Bachmann, H. Moore, and J. Calusdian. Self-Contained

Position Tracking of Human Movement Using Small Inertial/Magnetic

Sensor Modules. In Transactions of the IEEE International Conference
on Robotics and Automation, pages 2526–2533, April 2007.

[43] D. Roetenberg, H.J. Luinge, C.T.M. Baten, and P.H. Veltink. Compensation

of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Hu-

man Body Segment Orientation. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 13(3):395–405, September 2005.

[44] C. Goodvin, E. Park, K. Huang, and K. Sakaki. Development of a

Real-Time Three-Dimensional Spinal Motion Measurement System for

Clinical Practice. Medical and Biological Engineering and Computing,
44(12):1061–1075, 2006.

[45] G. Ebersbach, M. Heijmenberg, L. Kindermann, T. Trottenberg, J. Wissel,
and W. Poewe. Interference of Rhythmic Constraint on Gait in Healthy

References 23

Subjects and Patients with Early Parkinson’s Disease: Evidence for

Impaired Locomotor Pattern Generation in Early Parkinson’s Disease.
Movement Disorders, 14(4):619–625, 1999.

[46] P.D. Hung, S. Bonnet, R. Guillemaud, E. Castelli, and P.T.N. Yen. Es-

timation of Respiratory Waveform Using an Accelerometer. In 5th IEEE
International Symposium on Biomedical Imaging: From Nano to Macro,
pages 1493–1496, May 2008.

[47] P. Mistiaen. Design of a Breathing Sensor using Accelerometers. Master’s
thesis, Ghent University, Ghent, Belgium, 2009.

[48] T.M.E. Nijsen, J.B.A.M. Arendsa, P.A.M. Griepa, and P.J.M. Cluitmansa.
The Potential Value of Three-Dimensional Accelerometry for Detection

of Motor Seizures in Severe Epilepsy. Epilepsy and Behavior, 7:74–Ű84,
2005.

[49] H. Luo, G.K. Fedder, and L.R. Carley. A 1 mG Lateral CMOS-MEMS

Accelerometer. In The Thirteenth Annual International Conference on
Micro Electro Mechanical Systems, pages 502–507, January 2000.

[50] E.H. Hall. On a New Action of the Magnet on Electric Currents. American
Journal of Mathematics, 2:287–292, 1879.

[51] J. Kyynäräinen, J. Saarilahti, H. Kattelus, A. Kärkkäinen, T. Meinander,
A. Oja, P. Pekko, H. Seppä, M. Suhonen, H. Kuisma, S. Ruotsalainen,
and M. Tilli. A 3D Micromechanical Compass. Sensors and Actuators A:
Physical, 142(2):561–568, 2008.

[52] M.S. Weinberg and A. Kourepenis. Error Sources in In-Plane Silicon

Tuning-Fork MEMS Gyroscopes. Journal of Microelectromechanical Sys-
tems, 15(3):479–491, June 2006.

[53] S. Tilak, N.B. Abu-Ghazaleh, and W. Heinzelman. A Taxonomy of Wireless

Microsensor Network Models. Mobile Computing and Communications
Review, 3(2):28–36, 2002.

[54] C. Alippi, R. Camplani, C. Galperti, and M. Roveri. A Robust, Adaptive,

Solar-Powered WSN Framework for Aquatic Environmental Monitoring.
IEEE Sensors Journal, 11(1):45–55, January 2011.

[55] A. Manjeshwar and D.P. Agrawaly. APTEEN: A Hybrid Protocol for

Efficient Routing and Comprehensive Information Retrieval in Wireless

Sensor Networks. In Proceedings of the International Parallel and Dis-
tributed Processing Symposium, volume 2, page 0195b, Fort Lauderdale,
Florida, April 2002.

24 References

[56] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol for

Wireless Sensor Networks. In Proceedings of the 21st IEEE International
Conference on Computer Communications, volume 3, pages 1567–1576,
New York, NY, USA, June 2002.

[57] H. Dubois-Ferrière, L. Fabre, R. Meier, and P. Metrailler. TinyNode: a

Comprehensive Platform for Wireless Sensor Network Applications. In
Proceedings of the 5th International Conference on Information Process-
ing in Sensor Networks, pages 358–365, 2006.

[58] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling Ultra-Low Power

Wireless Research. In Proceedings of the 4th International Symposium
on Information Processing in Sensor Networks, pages 364Ű–369, 2005.

[59] R.B. Smith. SPOTWorld and the Sun SPOT. In Proceedings of the 6th
International Conference on Information Processing in Sensor Networks,
pages 565–566, 2007.

[60] XSens Technologies. MTw 3DOF Orientation Tracker. http://www.xsens.
com/images/stories/products/PDF_Brochures/mtwleaflet.pdf.

[61] Intersense Inc. Intersense Wireless InertiaCube3. http://www.intersense.
com/uploads/documents/Wireless_InertiaCube3_Datasheet.pdf.

[62] Inertia Technology. ProMove-2. http://inertia-technology.com/
wp-content/uploads/2010/12/promove2_datasheet_preliminary.pdf.

[63] A. D. Young, M. J. Ling, and D. K. Arvind. Orient-2: a Realtime Wireless

Posture Tracking System using Local Orientation Estimation. In Pro-
ceedings of the 4th Workshop on Embedded Networked Sensors, pages
53–57, Cork, Ireland, 2007.

[64] A. Lynch, B. Majeed, J. Barton, F. Murphy, K. Delaney, and S. OŠMath-
una. A Wireless Inertial Measurement System (WIMS) for an Interactive

Dance Environment. Journal of Physics: Conference Series, 15:95Ű–100,
2005.

[65] X. Yun and E.R. Bachmann. Design, Implementation, and Experimental

Results of a Quaternion-Based Kalman Filter for Human Body Motion

Tracking. IEEE Transactions on Robotics, 22(6):1216–1227, 2006.

[66] E.R. Bachman. Inertial and Magnetic Tracking of Limb Segment Orien-

tation for Inserting Humans into Synthetic Environments. PhD thesis,
Naval Postgraduate School, Monterey, California, USA, 2000.

http://www.xsens.com/images/stories/products/PDF_Brochures/mtw leaflet.pdf
http://www.xsens.com/images/stories/products/PDF_Brochures/mtw leaflet.pdf
http://www.intersense.com/uploads/documents/Wireless_InertiaCube3_Datasheet.pdf
http://www.intersense.com/uploads/documents/Wireless_InertiaCube3_Datasheet.pdf
http://inertia-technology.com/wp-content/uploads/2010/12/promove2_datasheet_preliminary.pdf
http://inertia-technology.com/wp-content/uploads/2010/12/promove2_datasheet_preliminary.pdf

References 25

[67] A.D. Young, M.J. Ling, and D.K. Arvind. Distributed Estimation of Linear

Acceleration for Improved Accuracy in Wireless Inertial Motion Capture.
In Proceedings of the 9th ACM/IEEE International Conference on Infor-
mation Processing in Sensor Networks, pages 256–267, April 2010.

[68] T. Harada, T. Mori, and T. Sato. Development of a Tiny Orientation

Estimation Device to Operate under Motion and Magnetic Disturbance.
The International Journal of Robotics Research, 26(6):547–559, 2007.

[69] H.J. Luinge, P.H. Veltink, and C.T.M. Baten. Ambulatory Measurement of

Arm Orientation. Journal of Biomechanics, 40(1):78–85, 2007.

[70] X. Yun, E.R. Bachmann, and R.B. McGhee. A Simplified Quaternion-

Based Algorithm for Orientation Estimation From Earth Gravity and

Magnetic Field Measurements. IEEE Transactions on Instrumentation
and Measurement, 57(3):638–650, March 2008.

[71] XSens Technologies. MVN Inertial Motion Capture. http://www.xsens.
com/images/stories/products/PDF_Brochures/mvnleaflet.pdf.

[72] Animazoo. IGS-190 Mobile Motion Capture System. http://www.
animazoo.com/motion-capture-systems/.

[73] E.P. Hanavan. A Mathematical Model of the Human Body. Techni-
cal Report TR-64-102, Aerospace Medical Research Laboratory, Wright-
Patterson Air Force Base, OH, USA, 1964.

http://www.xsens.com/images/stories/products/PDF_Brochures/mvn leaflet.pdf
http://www.xsens.com/images/stories/products/PDF_Brochures/mvn leaflet.pdf
http://www.animazoo.com/motion-capture-systems/
http://www.animazoo.com/motion-capture-systems/

2
Filter Design

This chapter describes the design of an orientation estimating filter. How
sensor output data is transformed from raw measurements to useful information
and which additional mechanisms are needed to obtain reliable estimates.

2.1 Introduction

Before the actual filter design can be described, some important principles
must be outlined. First, mathematical representations of rigid body orientation
are introduced. These formalisms form the basis of the process model formulas
used in the orientation estimating filter. Second, the basics of the used filter
architecture is explained and some derived versions developed for non-linear
systems are described.

When the basic ideas have been introduced, the principles can be applied
to the problem at hand. All equations necessary for estimation are derived
and the entire procedure is outlined. This procedure consists of different
steps of preprocessing of the sensor values, estimation using the Kalman filter
framework and adjusting the parameters to ensure robustness and accuracy.

In order for the estimator to perform adequately, several parameters will
need to be estimated. Real life captures of movements help to model the
process and tune the parameters. Later, simulations are executed to test the
performance of the filter and to determine the influence certain parameters
might have on the filter characteristics.

28 Filter Design

2.2 Orientation of a Rigid Body

The concept of rigid body orientation is defined as the relation between a
moving coordinate system attached to the body and a fixed, earth-bound ref-
erence frame. Conventionally, a fixed reference frame is chosen with positive
axes pointing to the local east, north and up direction, forming a right-handed
base. The moving coordinate system consists of three orthogonal axes point-
ing along distinct geometric features of the rigid body at hand. Considering
for example an airplane, the axes could be defined along the length axis of
the plane, the left wing and straight up.

Various methods are available to describe orientation mathematically [1].
Each method has advantages and disadvantages which should be taken into
account [2]. Euler angles and quaternions are most common and will be dis-
cussed further in this section.

2.2.1 Euler Angles

Euler angles describe the orientation of a rigid body as three subsequent
rotations of the reference frame around well defined axes. Depending on the
choice of these axes, many different conventions exist, where the axes can be
chosen in the reference or the moving coordinate system. Intrinsic rotations
are executed around moving axes of the object-bound coordinate system, while
extrinsic rotations are performed around fixed, earth-bound reference axes [3].

2.2.1.1 Convention

The convention used in this work is known as Tait-Bryan angles or, more spe-
cific, the Roll-Pitch-Yaw convention. This convention uses three subsequent
intrinsic rotations around three different axes. The order used is Z-Y-X, where
the Z-rotation is designated as Yaw, Y-rotation corresponds to Pitch and X-
rotation equals Roll [4]. Figure 2.1 visualises the subsequent rotations of the
convention applied to an airplane.

Commonly, the Greek symbols φ, θ and ψ denote the roll, pitch and yaw
angles respectively. Positive values of the angles refer to a counter-clockwise
rotation around the corresponding axis. This convention is known as the
right-hand rule. Note the negative sign of the θ angle in Figure 2.1 as here
clockwise rotation around the Y-axis is indicated.

In order to describe a certain orientation with a unique set of angles,
limited ranges apply. Both φ and ψ are defined modulo 2π radians or 360◦,
while θ is only allowed to cover π radians or 180◦. The most commonly used
ranges are [0, 360◦[for roll and yaw angles and [−90◦, 90◦] for the pitch
angle.

Orientation of a Rigid Body 29

Z

Y

X

Yaw (ψ)

Roll (φ)

Pitch (-θ)

Figure 2.1: Roll, pitch and yaw convention applied to an airplane.

2.2.1.2 Rotation Matrices

An easy way to apply a certain rotation to a vector consists of multiplying the
original vector coordinates in the fixed reference system with a rotation matrix,
which results in new vector coordinates in the rotated reference system:

v ′ = R v (2.1)

The rotation matrix associated with a roll operation around the X-axis over
an angle φ is given by:

Rx =




1 0 0
0 cosφ −sinφ
0 sinφ cosφ



 (2.2)

It is easily understood that the resulting vector will retain the same X-
coordinate as the original vector as this is the axis around which the rotation
takes place. The Y- and Z-coordinate however, change in value according to
the sine and cosine of the angle.

Similarly, the rotation matrices for pitch and yaw rotations over respec-
tively θ and ψ are given by:

30 Filter Design

Ry =




cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ



 (2.3)

Rz =




cosψ −sinψ 0
sinψ cosψ 0

0 0 1



 (2.4)

Euler angles compose three individual rotations in a certain order to obtain
the final orientation. Likewise, all three rotation matrices may be multiplied
to obtain the combined rotation in a single matrix. Note that the matrix
positioned at the right will effect the vector first. This implies that the matrices
must be left multiplied according to the Euler angle order.

R = Rx Ry Rz =



cosθcosψ −cosθsinψ sinθ

cosφsinψ + sinφsinθcosψ cosφcosψ − sinφsinθsinψ −sinφcosθ
sinφsinψ − cosφsinθcosψ sinφcosψ + cosφsinθsinψ cosφcosθ





(2.5)

2.2.1.3 Relation to Body Rates

Due to the fact that the rotation axes used to obtain the orientation of a
rigid body do not correspond to the axes of the reference system bound to the
object, body rates do not correspond with Euler rates. Consequently, body
rates may not be integrated over time to obtain Euler angles. The angular
rate in the earth bound fixed reference system ωref can be expressed in terms
of the Euler rates (φ̇, θ̇ and ψ̇) and the corresponding rotation matrices [5]:

ωref =




0
0
ψ̇



 + R−1
z




0
θ̇

0



 + R−1
z R−1

y




φ̇

0
0



 (2.6)

The Z-axis of the reference system corresponds to the ψ-axis, so it can be
added up directly. The other two rates must first be rotated in order to align
both axes. The body rates ωbody are a result of the full rotation of the angular
rates in the reference system:

ωbody = R ωref = Rx Ry Rz ωref (2.7)

Substituting (2.6) in (2.7) yields:

Orientation of a Rigid Body 31

ωbody = Rx Ry Rz









0
0
ψ̇



 + R−1
z





0
θ̇

0



 + R−1
z R−1

y





φ̇

0
0







 (2.8)

= Rx Ry Rz





0
0
ψ̇



 + Rx Ry





0
θ̇

0



 + Rx





φ̇

0
0



 (2.9)

Using (2.2), (2.3) and (2.4), the above equation can be reduced to:

ωbody =





p
q
r



 =





φ̇ + ψ̇ sinθ
θ̇ cosφ − ψ̇ sinφ cosθ
θ̇ sinφ + ψ̇ cosφ cosθ



 (2.10)

The inverse of (2.10) can easily be deduced [6]:





φ̇

θ̇

ψ̇



 =





p − q sinφ tanθ + r cosφ tanθ
q cosφ + r sinφ

− q sinφ secθ + r cosφ secθ



 (2.11)

2.2.1.4 Performance

Rotating a single vector requires this vector to be subsequently multiplied by
all three rotation matrices. Using the fact that four of the elements in the
matrices are zero and one element equals unity, this requires four multipli-
cations and two additions per matrix multiplication, resulting in a total of 12
multiplications and 6 additions. It is important to note however that before
these operations can be executed, sines and cosines of all three angles must
be determined.

An important drawback of Euler angles however, is a singularity called
the gimbal lock. When the pitch angle approaches its extreme values (±90◦),
the resulting roll axis and original yaw axis coincide. This leads to the fact
that each orientation with an extreme pitch can be represented by an infinite
number of Euler angle sets. One degree of freedom is essentially lost in the
gimbal lock. For example, the simple upright position with zero roll and yaw
and 90◦ pitch can be obtained by any set of angles where the roll and yaw
angles are each other’s negative.

2.2.2 Quaternion

Quaternions are a mathematical extension of complex numbers where the
imaginary part consists of a vector with three components rather than a sin-
gle real number. The quaternion set thus forms a four-dimensional vector

32 Filter Design

space with elements in R4. One number forms the real or scalar part of the
quaternion, while the other three form the imaginary or vector part [7].

2.2.2.1 Notation

Generally, a quaternion can be written as a linear combination of the four
base vectors of the quaternion space:

q = w + x i + y j + z k, (2.12)

where i, j and k denote the imaginary base vectors. Other common nota-
tions write quaternions as a scalar/vector pair or as a four dimensional vector:

q = [w, v] = [w, x, y, z] (2.13)

2.2.2.2 Operations

Several operations are defined within the quaternion space. The addition of
two quaternions simply results in a quaternion whose elements equal the sum
of the base elements:

q1 + q2 = (w1 + w2) + (x1 + x2) i + (y1 + y2) j + (z1 + z2) k. (2.14)

A quaternion may also be multiplied with a scalar number leading to each
of the elements being multiplied by this scalar:

a q = aw + a x i + ay j + a z k. (2.15)

This also leads to the definition of the negative or additive inverse of a
quaternion:

− q = −w − x i − y j − z k. (2.16)

By defining the products of the base elements, quaternion multiplication
can be determined using distributive law. In 1843, Sir William Rowan Hamil-
ton defined quaternion multiplication [8] by carving the following equations
into the stone of the Brougham Bridge in Dublin:

i2 = j2 = k2 = i j k = − 1 (2.17)

From these equations, the following relations can further be derived:

i j = k j k = i k i = j

j i = −k k j = −i i k = −j

Orientation of a Rigid Body 33

The above equations clearly indicate that quaternion multiplication is not
commutative. Three dimensional rotations also exhibit this property, hinting
to a possible relation between both.

The multiplication of two quaternions can now be determined by obeying
the above equations:

q1 ⊗ q2 = w1 w2 − x1 x2 − y1 y2 − z1 z2

+ (w1 x2 + x1 w2 + y1 z2 − z1 y2) i

+ (w1 y2 − x1 z2 + y1 w2 + z1 x2) j

+ (w1 z2 + x1 y2 − y1 x2 + z1 w2) k

(2.18)

The above product is also referred to as the Hamilton product and will fur-
ther be denoted by the ⊗-sign. Using the scalar/vector notation, the Hamilton
product can also be expressed as:

q1 ⊗ q2 = [w1 w2 − v1 · v2, w1 v2 + w2 v1 + v1 × v2] , (2.19)

where · and × respectively denote the inner and vector product of three
dimensional vectors:

v1 · v2 = x1 x2 + y1 y2 + z1 z2 (2.20)

v1 × v2 = [y1 z2 − z1 y2, z1 x2 − x1 z2, x1 y2 − y1 x2] (2.21)

Conjugation of a quaternion simply requires the inversion of the complex
part, as is the case with complex numbers:

q∗ = w − x i − y j − z k. (2.22)

The norm of a quaternion is defined using the above definition of the
conjugate and results to be the square root of the summation of the square of
each of the quaternion elements:

|q| =
√

q ⊗ q∗ =
√

w2 + x2 + y2 + z2. (2.23)

The multiplicative inverse can easily be derived from the above equations:

q−1 =
q∗

|q|2
. (2.24)

34 Filter Design

2.2.2.3 Quaternions and Three Dimensional Rotation

Each orientation of a rigid body can be described by a rotation over a certain
angle α around a certain axis with unit direction vector u. The quaternion
associated to this rotation is defined as follows [9]:

q = cos
α

2
+ u sin

α

2
. (2.25)

The norm of the above quaternion clearly equals unity. Remark that re-
versing the axis direction and negating the angle results in the exact same
quaternion:

q = cos
(

−
α

2

)

− u sin
(

−
α

2

)

= cos
α

2
+ u sin

α

2
, (2.26)

which is expected as both resulting orientations are also equal. Further-
more, also note that the negative of q also corresponds to the same orientation:

−q = −cos
α

2
− u sin

α

2

= cos
(

180◦ −
α

2

)

− u sin
(

180◦ −
α

2

)

= cos
(

360◦ − α

2

)

− u sin
(

360◦ − α

2

)

= cos
(−α

2

)

− u sin
(−α

2

)

= cos
α

2
+ u sin

α

2
, (2.27)

using the fact that α is defined modulo 360◦. This implies that every
orientation can in fact be represented by either of the two quaternions.

In order to use the defined quaternion to calculate rotations of a vector r,
one must first define the quaternion qr , which consists of the vector components
as the imaginary part:

qr = xr i + yr j + zr k. (2.28)

The rotated version of r, r ′, is then found as the complex part of the
quaternion resulting from the following product:

q′r = q ⊗ qr ⊗ q−1. (2.29)

The real part of the resulting quaternion q′r will always equal zero, re-
sulting in a pure vector quaternion result. Note that, as q represents a unit
quaternion, the inverse may also be replaced by the conjugate as follows from

Orientation of a Rigid Body 35

(2.24). This can easily be understood as any rotation can be inverted by ei-
ther negating the rotation angle or reversing the axis direction. Both of these
operations will negate the vector part of the quaternion.

Concatenation of rotations can be executed by multiplying the respective
quaternions before applying (2.29) with the resulting quaternion. Let q1 and
q2 correspond to subsequent rotations:

(q1 ⊗ q2) ⊗ qr ⊗ (q1 ⊗ q2)−1 = q1 ⊗ q2 ⊗ qr ⊗ q−1
2 ⊗ q−1

1

= q1 ⊗
(

q2 ⊗ qr ⊗ q−1
2

)

⊗ q−1
1 ,

which shows that a rotation with the product quaternion equals a rota-
tion with q2 followed by one with q1. As is the case with rotation matrices,
quaternions must be left multiplied to be concatenated.

2.2.2.4 Relation to body rates

Assuming small changes in angular position, an equation can be derived link-
ing quaternion rate to body rates [10]:

q̇ = 1
2

q ⊗ qωref =
1
2

q ⊗
[

0 p q r
]

(2.30)

The above equation allows to relate angular body rates to quaternion rates
without using any trigonometric functions.

2.2.2.5 Performance

Using quaternions as a representation for orientation requires keeping track
of four doubles compared to three with Euler angles. Also, evaluation of (2.29)
requires 24 multiplications and 18 additions when keeping in mind that some
of the components are zero. This is twice the amount of multiplications and
three times the amount of additions required to calculate a rotation using
Euler angles.

However, quaternions do not require any trigonometric calculations as
Euler angles do and, more importantly, do not suffer from any singularities.
Due to the fact that an orientation is described by a single rotation over a
certain angle and around a certain axis, no gimbal lock occurs.

2.2.3 Conversion

Orientations expressed in either of the forms presented can be converted in
the other representation. Both transformation formulas are derived here.

36 Filter Design

2.2.3.1 Euler Angles to Quaternion

The conversion from Euler angles to quaternion is easily derived. Each of
the three individual rotations can be represented by a single quaternion and
multiplied in the same order as the rotation matrices in (2.5). The yaw rotation
is applied first and consists of a rotation around the Z-axis over ψ. Applying
(2.25) quickly results in:

qψ =
[

cosψ2 0 0 sinψ2
]

(2.31)

Similar expressions are found for the pitch and roll rotations:

qθ =
[

cos θ2 0 sin θ2 0
]

(2.32)

qφ =
[

cosφ2 sinφ2 0 0
]

(2.33)

The quaternion describing the entire orientation can then be found by
multiplying all of the quaternions in the correct order:

q = qφ ⊗ qθ ⊗ qψ (2.34)

Or in expanded form:

q =





















cosφ2 cos θ2 cosψ2 − sinφ2 sin θ2 sinψ2

sinφ2 cos θ2 cosψ2 + cosφ2 sin θ2 sinψ2

cosφ2 sin θ2 cosψ2 − sinφ2 cos θ2 sinψ2

cosφ2 cos θ2 sinψ2 + sinφ2 sin θ2 cosψ2





















(2.35)

2.2.3.2 Quaternion to Euler Angles

The conversion from quaternion form to Euler angles is derived via rotation
matrices. Expanding (2.29) and rewriting the result in matrix notation gives:

Rq =





w2 + x2 − y2 − z2 2 (x y − w z) 2 (w y + x z)
2 (x y + w z) w2 − x2 + y2 − z2 2 (y z − w x)
2 (w y − x z) 2 (y z + w x) w2 − x2 − y2 + z2





(2.36)
Given the fact that the quaternion must be normalised, this can be rewritten

as:

Kalman Filter 37

Rq =





1 − 2
(

y2 + z2
)

2 (x y − w z) 2 (w y + x z)
2 (x y + w z) 1 − 2

(

x2 + z2
)

2 (y z − w x)
2 (w y − x z) 2 (y z + w x) 1 − 2

(

x2 + y2
)





(2.37)
Comparison of (2.37) with (2.5) finally results in the following conversion

formulas:





φ
θ
ψ



 =

























arctan

(

2 (w x − y z)

1 − 2
(

x2 + y2
)

)

arcsin (2 (w y + x z))

arctan

(

2 (w z − x y)

1 − 2
(

y2 + z2
)

)

























(2.38)

2.3 Kalman Filter

The Kalman Filter (KF) is a recursive data processing algorithm that esti-
mates the state of a dynamic system from a series of incomplete and noisy
measurements [11]. It is a predictor-corrector type filter where the final esti-
mate of a single step is a weighted average of the predicted and the measured
value. The weights are derived from the covariance, which is a measure for
the uncertainty of the present values. The filter also allows multiple mea-
surements from the same state to be fused into a single estimate, as long as
the statistics of each of these measurements are known. Basically, the filter
is a Maximum Likelyhood (ML) estimator that minimizes the error covariance
under the assumption that some conditions are met [12].

2.3.1 System Model

The KF is based on a linear dynamic system model that describes the problem
at hand using vectors and matrices. The system state is represented by a vec-
tor and it is assumed that this state follows a certain process model equation
where the current state is a linear combination of the state in the previous
step, the current input and a random noise term. Denoting the current time
step by k , the general form of the process model equation is:

xk = Ak xk−1 + Bk uk + wk , (2.39)

where x ∈ Rn represents the state vector, A ∈ Rn xn is the state transition
matrix describing the change from the previous state, u ∈ Rl is the input vector

38 Filter Design

term, B ∈ Rn x l is the input transition matrix modeling the relation between
the state and the input, and w ∈ Rn corresponds to the process noise. It is
assumed that the noise term is time invariant, Gaussian white noise with zero
mean and covariance matrix Q ∈ Rn xn:

P (wk) ∼ N (0, Qk) (2.40)

Aside from the process model, a measurement model is required which
describes the relation between the state and the measurements. The general
form of the measurement model equation is given by:

zk = Hk xk + vk , (2.41)

where z ∈ Rm is the measurement vector, H ∈ Rm xn is the measurement
transition matrix describing the relation between the state and the measure-
ments and v ∈ Rm represents the measurement noise. As with the process
noise, it is assumed that the noise term is time invariant, Gaussian white noise
with zero mean and covariance matrix R ∈ Rm xm:

P (vk) ∼ N (0, Rk) (2.42)

Furthermore, process and measurement noise terms are assumed to be
independent. Note that in the above equations, all of the variables are allowed
to change over time (hence the k subscript), which is however not necessarily
the case.

2.3.2 Filter Algorithm

As already mentioned before, the KF consists of two major steps: prediction
and correction. In the prediction step, a first estimate of the current state
is predicted based on the process model equation and thus only using the
previous state and the current input. This predicted estimate is mostly referred
to as the a priori estimate and is denoted by x̂−. The correction step combines
the estimate from the prediction step with the measurement result to give the
final estimate for the current time step. This final estimate is known as the a

posteriori estimate and is denoted by x̂ .
Aside from providing an estimate of the state, both steps also supply the

estimate error covariance. Defining the a priori and a posteriori error as

e−k = xk − x̂−k (2.43)

ek = xk − x̂k , (2.44)

allows to define both covariances as well:

Kalman Filter 39

P−
k = E

[

e−k e−Tk
]

(2.45)

Pk = E
[

ek eTk
]

. (2.46)

In each cycle, the KF will thus propagate the first two moments of the
system state distribution. The a posteriori estimate reflects the mean of this
distribution, while the a posteriori estimate error covariance reflects the vari-
ance. If both (2.40) and (2.42) are satisfied, the state is actually normally
distributed:

P (xk) ∼ N (x̂k , Pk) (2.47)

2.3.2.1 Prediction

The state prediction equation is easily obtained by assuming zero noise and
substituting the previous a posteriori estimate in (2.39). The a priori estimate
covariance incorporates the uncertainty of the a posteriori estimate and the
noise by adding up both covariances appropriately.

x̂−k = Ak x̂k−1 + Bk uk (2.48)

P−
k = Ak Pk−1 ATk + Qk (2.49)

2.3.2.2 Correction

The correction step starts by calculating the Kalman gain Kk , which is chosen
such that the a posteriori estimate error covariance (2.46) is minimized. The a
posteriori estimate then results from a weighted sum of the a priori estimate
and the current innovation, which is defined as the mismatch between the
predicted (H x̂−) and the actual (z) measurement. Finally the a posteriori
estimate error covariance can be computed.

Kk = P−
k HT

k

(

Hk P−
k HT

k + Rk

)−1
(2.50)

x̂k = x̂−k + Kk

(

zk − Hk x̂−k
)

(2.51)

Pk = (In×n − Kk Hk) P−
k (2.52)

In the above formula In×n represents the identity matrix of size n.
The Kalman gain determines which component weighs more in the final

estimate according to their level of uncertainty. If the measurement covariance
matrix R is much smaller than the a priori estimate error covariance P−, the
actual measurement will be trusted more than the predicted estimate, while

40 Filter Design

the roles are reversed in case R turns out to be much bigger than P−. This
can easily be understood when looking at some extreme cases:

lim
R→0

K = H−1 (2.53)

lim
P−→0

K = 0 (2.54)

2.3.2.3 Recursion

The filter algorithm starts by choosing an appropriate initial value of the state
vector and the estimate error covariance. These values should accurately
reflect the distribution of the state in order to obtain a well functioning filter.
Afterwards, the prediction and correction steps are recursively applied, as
depicted in figure 2.2. Strictly speaking however, both steps are not required
to alternate. A predicted value may be corrected multiple times before a new
prediction is calculated. Multiple predictions are also allowed. This is e.g. the
case when a new measurement is not available at the appropriate time.

Kalman Filter

Predict Correct

Figure 2.2: Basic Kalman filter outline with two recursive steps.

2.3.3 Extended Kalman Filter

In standard form, the KF requires a system to be linear in order to estimate
the state in an optimal way. Many systems however, do not fit the linear
model described by (2.39) and (2.41). The Extended Kalman Filter (EKF)
provides a solution for estimating the state in these types of systems by lin-
earising the non-linear equations as first order approximations around the
current estimates [13].

2.3.3.1 System Model

A more general system model using a state vector that applies to non-linear
systems uses differentiable functions:

Kalman Filter 41

xk = fk (xk−1, uk) + wk (2.55)

zk = hk (xk) + vk . (2.56)

Both noise terms must again satisfy (2.40) and (2.42).

2.3.3.2 Linearisation

The standard Kalman equations can no longer be applied as the matrices are
replaced by non-linear functions. The solutions consists of computing the par-
tial derivatives of the functions resulting in Jacobian matrices and evaluating
them at the current state estimate.

Ak =
∂fk
∂x

∣

∣

∣

∣

(x̂k−1, uk)
(2.57)

Hk =
∂hk
∂x

∣

∣

∣

∣

x̂−k

(2.58)

2.3.3.3 Filter Algorithm

Using the defined Jacobians, the standard filter equations can easily be rewrit-
ten. For the prediction step:

x̂−k = fk (x̂k−1, uk)

P−
k = Ak Pk−1 ATk + Qk (2.59)

and for the correction step:

Kk = P−
k HT

k

(

Hk P−
k HT

k + Rk

)−1

x̂k = x̂−k + Kk

(

zk − hk
(

x̂−k
))

(2.60)

Pk = (In×n − Kk Hk) P−
k

By using Jacobians evaluated at the current state estimate however, the
EKF only approximates the optimal estimator, unlike the standard version.
Furthermore, errors in the estimations result in a linearisation around the
wrong center point and could lead to instability of the filter.

42 Filter Design

2.3.4 Sigma Point Kalman Filters

By linearizing the system equations, the EKF ignores the fact that the state
is actually a random variable with an inherent uncertainty, resulting in a
suboptimal estimation of the state. Moreover, an EKF will only take into
account the first derivative, ignoring higher order moments of the distribution,
which results in poor performance for highly non-linear systems [14].

Sigma Points Kalman Filters (SPKFs), based on statistical linearisation,
were developed to address this issue. The sigma point approach consists of
approximating the statistical distribution by a discrete set of points, which
are called sigma points. These sigma points are then transformed by applying
the non-linear system equations, resulting in a transformed set of points, from
which the propagated mean and variance can be calculated. It can been shown
that the resulting mean and variance are accurately calculated to at least the
second order [15].

2.3.4.1 The Sigma Point Approach

Suppose a random variable with a known statistic undergoes a non-linear
transformation, resulting in a new variable:

y = g (x) (2.61)

Using the sigma point approach, the statistic of the resulting variable can
be approximated. First, sigma points must be chosen in such a way that their
distribution reflects the statistic of a random variable x ∈ Rn. Therefore, all
of the points are chosen symmetrically around the mean x̄ with a spread that
captures the covariance Px . A set of 2n+ 1 sigma points X that fulfills these
requirements is given by:

X|i =











x̄ i = 0

x̄ +
√
n Sx |i − 1 1 ≤ i ≤ n

x̄ − √
n Sx |i − n− 1 n < i ≤ 2n

(2.62)

where .|i denotes the i-th column of a matrix and Sx represents the square
root matrix of the covariance

√
Px as defined by the Cholesky decomposition

[16]:

Px = Sx ST
x . (2.63)

This decomposition is only defined for positive-definite matrices and can
be calculated by fairly straight-forward algorithms [17]. The square root matrix
Sx is a lower triangular matrix and, given the fact that the covariance matrix
is symmetrical, it only contains real elements.

Kalman Filter 43

A new set of sigma points is now calculated by transforming the original
set of sigma points using the given non-linear function:

Yi = g (Xi) (2.64)

From this new set, the resulting mean ȳ and covariance of the transformed
variable Py, as well as the cross-covariance between the input and output
variable Pxy, can be approximated:

ȳ ≈ 1
2n+ 1

2n
∑

i=0

Yi (2.65)

Py ≈ 1
2n+ 1

2n
∑

i=0

[Yi − ȳ] [Yi − ȳ]T (2.66)

Pxy ≈ 1
2n+ 1

2n
∑

i=0

[Xi − x̄] [Yi − ȳ]T (2.67)

2.3.4.2 Filter Implementation

Two popular SPKF implementations exist known as the Unscented Kalman
Filter (UKF) [18] and the Central Difference Kalman Filter (CDKF) [19, 20].
Both filters use sigma points to approximate the statistical distribution of
the state estimate. The difference between them is that the UKF applies
the Scaled Unscented Transformation [21], while the CDKF implements the
Stirling polynomial interpolation [22]. This difference is mainly reflected in
the values of the scalar coefficients and the approximation of the a posteriori
estimate error covariance. In practical implementations however, there is little
difference in the performance of both filter implementations.

Prediction Sigma Points

The first step in SPKFs consists of linearisation of the process model equation
(2.55) by defining a set of sigma points. Using a shorthand notation for (2.62),
the sigma point collection is given by:

X−
k =

[

x̂k−1, x̂k−1 + η
√

Pk−1, x̂k−1 − η
√

Pk−1

]

, (2.68)

where

η =

{√
n + λ UKF

h CDKF
(2.69)

44 Filter Design

n is the state dimension, and λ and h determine the spread of the sigma
points for respectively a UKF and a CDKF.

The size of the spreading parameter dictates the radius of the sphere that
bounds the sigma points around the statistical mean. When the spreading
is set too high, local non-linearities may not be incorporated in the sigma
point distribution after transformation, keeping the sigma points to close to
the mean might not capture any non-linear effects at all.

For the UKF, λ is mostly expressed as:

λ = α2 (n + κ) − n, (2.70)

where κ ≥ 0 determines the additional spread to the state vector size n
and 0 ≤ α ≤ 1 allows to resize the radius of the bounding sphere. Originally
α was introduced to avoid problems of sampling non-local effects in the sigma
points when n is high [21]. A negative κ value could result in an unstable
filter, so α would be used to reduce the spreading.

The optimal value for the h ≥ 1 parameter in CDKFs is dictated by the
distribution of the state variable. It turns out that h2 should approach the
kurtosis of this distribution in order to minimize estimation errors [23].

Prediction

The non-linear process model equation can now be used to determine a new
set of transformed sigma points whose distribution approximates the prediction
statistic:

Yk = f
(

X−
k , uk

)

(2.71)

The a priori estimation can now be determined by applying (2.65) with
modified weighing coefficients:

x−k =
2n
∑

i=0

Wm
i Yk |i , (2.72)

where for the UKF

Wm
i =



















λ

n + λ
i = 0

1
2 (n + λ)

1 ≤ i ≤ 2n

(2.73)

and for the CDKF

Kalman Filter 45

Wm
i =



















1
2h2

i = 0

h2 − n

h2
1 ≤ i ≤ 2n

(2.74)

The estimate error covariance is calculated in a significantly different man-
ner in both filter implementations. The UKF uses the calculated new mean as
a basis, while the CDKF only relies on the sigma points themselves. Appli-
cation of (2.66) quickly yields the UKF equation:

P−
k =

2n
∑

i=0

W c
i [Yk |i − x−k] [Yk |i − x−k]T + Qk (2.75)

where the weights W c
i are given by:

W c
i =



















λ

n + λ
+
(

1 − α2 + β
)

i = 0

1
2 (n + λ)

1 ≤ i ≤ 2n

(2.76)

Compared to the weighting coefficients for the mean Wm
i , the zeroth order

coefficient includes an extra term containing the scaling parameter α that was
already introduced in (2.70) and a new parameter β ≥ 0. When additional
information is known about the higher order moments of the statistical dis-
tribution of the state (e.g. the kurtosis), β may be used to incorporate this
knowledge and avoid errors in higher order terms.

The CDKF version follows from the second order Stirling interpolation ap-
proximation [20], which resembles a Taylor series expansion where the deriva-
tives are replaced by central divided differences [22].

P−
k =

n
∑

i=1

[

W c1
i

(

Yk |i − Yk |i+n
)2

+ W c2
i

(

Yk |i + Yk |i+n − 2 Yk |0
)2
]

+ Qk

(2.77)

where (.)2 is used as a shorthand for the vectorial outer product [.] [.]T and

W c1
i =

1
4h2

1 ≤ i ≤ n

W c2
i =

h2 − 1
4h4

1 ≤ i ≤ n (2.78)

46 Filter Design

Correction Sigma Points

Linearisation of the measurement model (2.56) is obtained by defining a second
set of sigma points centered around the a priori estimate:

Xk =
[

x̂−k , x̂−k + η
√

P−
k , x̂−k − η

√

P−
k

]

, (2.79)

The spreading parameters are again defined by (2.69). However, it is not
necessary that both sigma points use the same spreading. As the non-linear
measurement transition function h (.) could exhibit very different characteristics
compared to the state transition function f (.), different spreading values might
even improve the filter performance.

Measurement Prediction

Before the actual correction can be calculated, a measurement prediction must
be determined based on the transformation of the sigma points:

Zk = h (Xk) (2.80)

Both the measurement prediction and the error covariance of this mea-
surement can now be determined using equations very similar to (2.72), (2.75)
and (2.77):

z−k =
2n
∑

i=0

Wm
i Zi,k (2.81)

Pzk =



























∑2n
i=0 W

c
i

(

Zk |i − z−k
) (

Zk |i − z−k
)T

+ Rk UKF

∑n
i=1

[

W c1
i

(

Zk |i − Zk |i+n
)2

+W c2
i

(

Zk |i + Zk |i+n − 2 Zk |0
)2
]

+ Rk CDKF

(2.82)

where all of the weights are defined as in (2.73), (2.76), (2.74) and (2.78)
and (.)2 is used as a shorthand for the vectorial outer product [.] [.]T .

Aside from the measurement prediction covariance, the cross-covariance
matrix between the measurement prediction and the a priori estimate must
also be determined. In the UKF implementation the formula for this matrix
directly follows from (2.67):

Pxkzk =
2n
∑

i=0

W c
i

(

Xk |i − x−k
) (

Zk |i − z−k
)T

(2.83)

Kalman Filter 47

As with the covariance matrix, the CDKF does not make use of previ-
ously calculated means, yet only uses the sigma points to obtain the cross-
covariance. The formula again finds its origin in the second order Stirling
approximation [20].

Pxkzk =
√

W c1
i P−

k

[

Zk |1:n − Zk |n+1:2n

]T
(2.84)

Correction

The final step of the SPKF algorithm uses all of the results of the previous
steps to obtain the a posteriori estimate and its error covariance. First, the
Kalman gain is determined:

Kk = Pxkzk P−1
zk

(2.85)

The gain is then used to calculate the final estimate and the estimate error
covariance using formulas that resemble the standard KF equations (2.51) and
(2.52):

x̂k = x̂−k + Kk

(

zk − z−k
)

(2.86)

Pk = P−
k − Kk Pzk KT

k (2.87)

2.3.4.3 Performance

As a general rule, more sigma points mean a better approximation of the statis-
tic to a higher order. However, extra sigma points also increase the numerical
complexity and number of operations to be performed. The additional cost of
using sigma points is countered by the fact that no troublesome analytical
derivatives of complex non-linear systems need to be calculated.

Although the introduced spreading parameters have some influence on the
outcome of the SPKFs, their influence is rather limited. A global optimum
has not yet been found and it seems more likely that the optimum is problem
specific. It is however important to mention that some combinations result in
numerically unstable filters, which must be avoided at all cost.

2.3.5 Hybrid Kalman Filters

The described filter algorithms can also be mixed together to build an es-
timator. In some cases, the process model is a linear equation, while the
measurement model is highly non-linear. In this case, the prediction can be
implemented by standard KF equations and, depending on the non-linearity,
the correction either adopts an EKF or SPKF shape.

48 Filter Design

2.3.6 Adaptive Kalman Filters

The performance of the Kalman filter as an estimator greatly depends on the
accuracy by which the process is described. More specifically, the quality
of the a priori information about the process noise and measurement noise
directly influences the performance of the estimator [24]. However, this infor-
mation depends on factors that are difficult to obtain, such as process dynamics
and surrounding environment. In some cases, these factors could even be sub-
ject to changes during estimation. An adaptive estimation scheme where a
learning process dynamically adjusts the parameters tackles these issues and
makes the estimator less sensitive to errors in the a priori values.

The adaptive Kalman filter uses the innovation sequence to adjust the
noise covariance matrices Qk and Rk in order to suit the current situation [25].
Based on the whiteness of the innovation sequence, the covariance matrices
are adapted as follows:

Rk = Cνk − Hk P−
k HT

k (2.88)

Qk = Kk Cνk KT
k (2.89)

where Cνk is an approximation of the covariance matrix of the innovation,
calculated as a moving average from the previous innovation values:

Cνk =
1
N

k
∑

i=k−N+1

νi νT
i =

1
N

k
∑

i=k−N+1

(

zi − Hi x̂−i
) (

zi − Hi x̂−i
)T

(2.90)
The window size N should at least exceed the number of states and the

number of update measurements, as filter instability is likely to occur other-
wise. A large window size will be unable to track high frequency changes
in process dynamics, while a short window size might adapt parameters too
quickly to adjust to local or temporary effects. A trade-off clearly needs to be
made, depending on the expected rate of change in dynamics and the update
rate of the filter.

The adaptive principle can be applied to either type of Kalman filter, as the
innovation sequence is a vital part of the algorithm. Using adaptive schemes
however, care must be taken to avoid instability of the filter.

2.4 Orientation Estimator Design

In this section, the actual design of the orientation estimation filter is high-
lighted. Where the previous sections can be seen as an introduction to the

Orientation Estimator Design 49

principles that are used, this section covers some of the actual realisations.
The heart of the estimator consists of a Kalman filter, yet several additional
elements are present around the filter to improve the performance. Although
the main focus of this work is on the design of a gyro-less tracking system
(Magnetic Field and Gravitational (MFG)), a nine DOF attitude filter (MARG)
will also be proposed and used in further chapters as a reference basis for
comparison. The future development of this estimator within the Centre for
Microsystems Technology (CMST) lab is in the hands of Pietro Salvo.

First, an overview of the estimators is given by describing the architecture
with block diagrams. Then, more details are supplied about MEMS sensors
and necessary steps to validate their data. Next, the Kalman filter principle
is applied to the problem at hand and mathematical expressions are derived
describing the system model. Finally, the orientation estimation procedure is
summarised and the adaptive aspect is highlighted.

2.4.1 Filter Architecture

Two filter architectures are introduced in this section, though both are very
much alike. The main difference is found in the presence of the gyroscope,
which provides additional information for the MARG version of the filter.

2.4.1.1 MARG Filter

Figure 2.3 depicts the block diagram of the MARG filter. The heart of the filter
consists of an adaptive Kalman filter providing the actual orientation estimate.
Three vectors containing three dimensional sensor information forms the input,
as well as the covariance matrices, while the output consists of the orientation
in either Euler angles or as a quaternion.

All of the sensor outputs are processed before being used by the filter.
The accelerometer and magnetometer output are combined in a single vector
and form the measurement vector z of the Kalman filter. The gyroscope input
is added in the prediction step of the Kalman filter as the input term u. This
way, all of the modeling equations of the correction step are essentially equal
in both the MARG and the MFG filter. There is also a possibility for optional
post-processing of the output sequence.

2.4.1.2 MFG Filter

The block diagram for the MFG filter is displayed in figure 2.4. A Kalman
filter is again at the center of the diagram. The input now only consists of
processed accelerometer and magnetometer output vectors.

Two major differences are immediately clear. First, as the gyroscope is
not present, an approximation of the orientation rate by discrete derivation

50 Filter Design

m

a
[

a

m

]

z

Adaptive
Kalman Filter

u

r

x̂

Orientation

Q

R

PreProcess

Accelerometer

Magnetometer

Gyroscope

PostProcess

PreProcess

PreProcess

Figure 2.3: Block diagram of the MARG type filter.

m

a
[

a

m

]

z

Hybrid
Kalman Filter

u

x̂

Orientation

Q
R

Accelerometer

Magnetometer PreProcess

PostProcess

z−1

|a|2

|m|2

PreProcess

+
-

Figure 2.4: Block diagram of the MFG type filter.

of the state is fed back to the filter as the input term u. Second, the filter
is no longer adaptive, yet the magnitude of the measured acceleration and
magnetic field will influence the measurement noise covariance matrix. Under
normal circumstances, both measured vectors should approximately have a
fixed magnitude, however, when disturbances occur, this will no longer be the
case and the covariance should be adjusted. The adaptive Kalman filter has
been replaced by this custom adaptation as the averaging cannot track the
disturbance quickly enough, while direct adaptation can.

Orientation Estimator Design 51

2.4.2 Sensor Signals

The output of several MEMS sensors is combined to obtain full three dimen-
sional orientation. The absolute minimum for a drift-free estimator requires an
accelerometer and a magnetometer. A gyroscope is usually added to obtain
short-term information which can be integrated to obtain an estimate via dead
reckoning. Internally, all of these sensors consist of mechanical elements that
are subject to the quantity they are designed to measure. Electrical circuits
are added to provide a value indicating the size of this quantity and possibly
to implement an interface or processing unit.

Although the output is proportional to the desired quantity, offset errors
and noise still distort the readout values. Therefore, a sensor output model is
proposed and calibration procedures exist to match the output to the quantity
at hand.

2.4.2.1 Sensor Output Model

The output of a three dimensional MEMS sensor is usually modeled according
to equation (2.91). The vectors u ∈ R3 and q ∈ R3 respectively stand for
the sensor output and the actual quantity to be measured along each of the
three orthogonal sensitivity axes X, Y and Z. The bias vector is denoted by
b ∈ R3, K ∈ R3×3 corresponds to the gain matrix containing the scale factors
on its diagonal and the cross sensitivity values as off-diagonal elements and
w ∈ R3 stands for a Gaussian white noise term.

u = K q + b + w, (2.91)

where

K =





kxx kxy kxz
kyx kyy kyz
kzx kzy kzz



 b =





bx
by
bz



 (2.92)

The covariance matrix of the noise Pw ∈ R3×3, the gain matrix and bias
vector depend on the internal construction of the sensor and on environmental
factors. In the following, it will be assumed that all of these variables do not
change over time, and thus performing calibration can eliminate the effect of
both the bias and the gain. The noise however, is a random signal that will
be dealt with in the actual estimation procedure.

2.4.2.2 Calibration

Accelerometers and magnetometers can be calibrated in a similar way, how-
ever, gyroscopes require a different approach. The reason lies in the measured

52 Filter Design

quantity of the sensors. Gyroscopes measure rotational speed and thus mea-
sure zero whenever the component is stationary. Accelerometers and mag-
netometers however, measure a fixed vector value, respectively earth’s gravity
and magnetic field. When these sensors are stationary, their output will de-
pend on the overall orientation. Therefore, these sensors can be calibrated by
positioning them in well known directions while gyroscopes must be in motion
to perform calibration.

Accelerometer

The calibration procedure describes a method to estimate the bias vector and
the gain matrix. In order to perform the calibration, six measurements must be
executed [26]. Three measurements with gravity successively parallel to one
of the three axes, resulting in an acceleration of 1 g along this particular axis,
and three measurements with gravity anti parallel. The resulting six measured
vectors can be calculated according to equation (2.91) under the assumption
that the noise term equals zero. This assumption is strengthened by the fact
that each measurement is actually an average of multiple samples, reducing
the noise term to approximate its mean. For gravity along the X-axis, the
following expressions result:

ux+ =





ux+
x

ux+
y

ux+
z



 = Ka





1
0
0



 + ba =





ka
xx + ba

x
ka

xy + ba
y

ka
xz + ba

z





ux− =





ux−
x

ux−
y

ux−
z



 = Ka





−1
0
0



 + ba =





−ka
xx + ba

x
−ka

xy + ba
y

−ka
xz + ba

z



 (2.93)

The signed superscript denotes to which axis gravity is parallel (+) or
anti parallel (-). The superscript a indicates these values apply to the ac-
celerometer. Similar equations can be derived for gravity along the Y- and
Z-axis:

uy+ =





ka
yx + ba

x
ka

yy + ba
y

ka
yz + ba

z



 uy− =





−ka
yx + ba

x
−ka

yy + ba
y

−ka
yz + ba

z



 (2.94)

uz+ =





ka
zx + ba

x
ka

zy + ba
y

ka
zz + ba

z



 uz− =





−ka
zx + ba

x
−ka

zy + ba
y

−ka
zz + ba

z



 (2.95)

The different parameters can now be estimated by applying the following
formulas to the measured values:

Orientation Estimator Design 53

ba =
1
6





∑

t=x,y,z
ut+ +

∑

t=x,y,z
ut−



 (2.96)

ka
ij =

1
2

(

ui+j − ui−j
)

, ∀i, j ∈ {x, y, z} (2.97)

Using these estimations, the acceleration can be calculated from the mea-
sured values of the accelerometer by inverting equation (2.91) under the as-
sumption that the noise is zero:

a = (Ka)−1 (ua − ba) , (2.98)

where q has been replaced by a to indicate acceleration.

Magnetometer

Although the calibration procedure resembles the one used for accelerometers,
one important difference exists. The actual direction of the magnetic field
vector is much harder to find than the direction of gravity. If a magnetometer
is positioned according to gravity, equations (2.93) through (2.95) will contain
extra terms due to the horizontal component of the magnetic field and no longer
offer a straight forward solution if the exact same heading is not employed in
each measurement. There are three possible solutions to this problem that
could still lead to a valid calibration.

The first solution neglects the cross sensitivity terms in the gain matrix K.
When all of these terms are set to zero, the procedure described above can be
applied and the magnetometer must be positioned parallel and anti parallel
to gravity with each axis. The bias vector follows from equation (2.96) and
scale factors from (2.97) with i = j .

The second solution requires the user to search for the maximal and mini-
mal output values on each axis by attempting to align the axes to the magnetic
field. This way, equations (2.93) through (2.95) are valid and all of the cal-
ibration variables can be determined. However, in this way, the noise term
could have an influence on the final result. The measurements used to perform
the calibration would no longer be an average of multiple samples, but rather
represent an extreme output value, indicating that the noise term cannot be
assumed to approach its mean value.

A final way to solve the problem is to take measurements at different
headings and take the average over a number of full circle rotations. When
aligning an axis to the gravity vector and rotating the magnetometer around
the vertical, the output on the axis parallel to gravity should remain constant.
The output on the other two axes however, describes one full period of a sine

54 Filter Design

wave with each full rotation. So the average output over a number of full
circle rotations yields a fixed value on one axis and zero on the other two.
The calibration procedure for the accelerometer can now be applied to the
average values obtained while rotating to estimate the gain matrix Km and
the bias vector bm.

Gyroscope

The calibration procedure for gyroscopes requires a more elaborate setup.
Due to the fact that the sensors measure speed, a known angular rate must be
applied to the gyroscope in order to determine the gain and offset parameters.
Yet again, six measurements must be performed [27]. The sensor is placed par-
allel and anti parallel to gravity with each of its axes and a rotation around
the vertical axis with a fixed known angular rate is applied. Although it is of
course only required to perform the rotations around the actual sensor axes,
gravity is chosen as a reference in order to allow all of the calibration proce-
dures to be combined. The resulting measurements can be used in a similar
manner as has been described above to determine the calibration values. The
only difference lies in the gain matrix where the known angular rate ω should
also be included:

k
g
ij =

1
2ω

(

ui+j − ui−j
)

, ∀i, j ∈ {x, y, z} (2.99)

Generally, the gyroscope must be rotated around each axis for approxi-
mately 10 to 15 minutes [28] and the known angular rate should be chosen
somewhere in the middle of the sensor’s range.

2.4.2.3 Sensor Output Processing

Before the sensor output can be used by the attitude filter, pre-processing
steps are needed. These steps include naturally the calibration as described
in the previous section, but also low pass filtering of the output data and
normalisation, if required.

Accelerometer

Figure 2.5 is a block diagram of the pre-processing steps to which the ac-
celerometer output is subjected. The first step implements (2.98) and thus
completes the calibration. Then, the resulting signal is filtered by a digital
low pass filter to eliminate high frequency noise. The cut-off frequency of this
filter must be chosen such that relevant signals corresponding to human move-
ment remain untouched. The final step normalises the signal. Under normal
conditions, the filter expects the accelerometer to measure only gravity, yet

Orientation Estimator Design 55

movement also introduces accelerations that distort the signal. Normalising
reduces the effect this distortion has on the eventual orientation estimate.

(.)
|.|2

(Ka)−1 ((.) − ba) Digital Low
Pass Filter

baKa

aua
an

Figure 2.5: Block diagram of accelerometer output processing.

Magnetometer

The magnetometer signal is subjected to similar pre-processing as the ac-
celerometer output. Figure 2.6 displays the block diagram. Normalisation of
the signal is performed not only to reduce the effect of disturbances but also
originates in the fact that the magnitude of the earth magnetic field highly
depends on the environment. Large quantities of iron in a building struc-
ture e.g. can reduce this magnitude significantly. By normalising, this effect
is negated. However, normalisation also means that the output of the mag-
netometer will need to be compared to the normalised earth magnetic field
vector, and not to the nominal vector.

(.)
|.|2

(Km)−1 ((.) − bm) Digital Low
Pass Filter

bmKm

mum
mn

Figure 2.6: Block diagram of magnetometer output processing.

Gyroscope

The pre-processing of the gyroscope signal is displayed in figure 2.7. Clearly,
no normalisation is present here as the measured quantity is supposed to be
integrated to obtain angular position.

2.4.3 Kalman Filter System Model

The system model must be defined for each type of filter, MARG and MFG with
either Euler angles or quaternion representation. After selecting a suitable
state vector, process and measurement model equations may be derived.

56 Filter Design

(Kr)−1 ((.) − br) Digital Low
Pass Filter

brKr

rur

Figure 2.7: Block diagram of gyroscope output processing.

2.4.3.1 State Vector

The state vector x of the KF must keep track of the full three dimensional ori-
entation of the sensor node. Two possible representations will be investigated:
Euler angles in the roll-pitch-yaw convention and quaternions.

Euler Angles

Obviously the state must contain all three Euler angles, Roll, Pitch and Yaw,
as defined in section 2.2.1:

x =





φ

θ

ψ



 (2.100)

Quaternion

In the quaternion case, the state must incorporate all four components of the
quaternion as defined in section 2.2.2:

x = qx =









w

x

y

z









(2.101)

2.4.3.2 Process Model

The process model predicts the evolution of the state vector x . In the MARG
version, the gyroscope output is added as the input term u, which means that
the process model is different for both filter types.

MFG Process Model

As only three dimensional orientation is present in the state, the process model
will be a rather crude approximation of the actual process. In order to actually
predict a certain movement, rather then static orientation, an approximation of
the Euler angular velocity or the quaternion rate will be made using previous

Orientation Estimator Design 57

state estimations and adding a fraction of this approximation to the state
vector:

xk = xk−1 + τ (xk−1 − xk−2) + wk , (2.102)

where τ will further be referred to as the feedback gain and w represents
the process noise with covariance matrix Q. As movement is assumed to be
random, all of the vector components are uncorrelated and Q is modeled as:

Q = q In×n, (2.103)

where In×n represents the identity matrix of size three for the Euler and
size four for the quaternion version.

Note that the process model equation is clearly linear and that the matrices
are not changing over time, hence no k subscript is present.

MARG Process Model

The gyroscope offers useful information about the the current angular rate,
which can be used to provide an accurate prediction of the state. The gyro-
scope output is considered as the input vector u:

u =





rx
ry
rz



 (2.104)

As the rate sensor is attached to the sensor node, it will deliver body rates
which must still be converted. In case of a Euler angles state, conversion is
executed using (2.11):

f









φ

θ

ψ



 ,





rx
ry
rz







 =





φ

θ

ψ



+ ∆T





rx − ry sinφ tanθ + rz cosφ tanθ
ry cosφ + rz sinφ

− ry sinφ secθ + rz cosφ secθ



+ wk .

(2.105)
In the case of a quaternion state, (2.30) completes the conversion:

f

















w

x

y

z









,





rx
ry
rz













=









w

x

y

z









+
∆T
2

(

qxk−1 ⊗ qr

)

+ wk . (2.106)

In both equations, ∆T equals the time between two updates. As movement
is assumed to be random, the noise covariance equation (2.103) still applies.
However, the source of the noise can now be found in the gyroscope output

58 Filter Design

and not in the crude approximation of motion that was used in the MFG filter.
It is thus assumed that the covariance will be significantly lower in this model.

Although the process model for the MFG filter is linear, this is clearly
not the case for the MARG filter. A direct result is that linearisation will be
necessary using either EKF or SPKF methods.

2.4.3.3 Measurement Model

The measurement model relates the measured value z to the value of the state
vector x . The measured value consists of two parts: zacc and zmag, which cor-
respond to respectively the output of the accelerometer and the magnetometer.
The accelerometer is expected to measure earth’s gravity field in the coordi-
nate system of the sensor node. Similarly, the magnetometer is expected to
measure earth’s magnetic field in sensor coordinates. Let g and h be the vec-
tors respectively representing earth’s gravity field and earth’s magnetic field
in earth coordinates. The measurement model for both representations can
then be determined using the formalisms introduced in section 2.2.

Euler

Let Rx , Ry, and Rz be the rotation matrices corresponding to rotations of
respectively φ around the X-axis, θ around the Y-axis and ψ around the Z-
axis as described in (2.2) – (2.4). The expected sensor output can then be
written as:

z =
[

zacc
zmag

]

= h(x) =
[

Rx Ry Rz g

Rx Ry Rz h

]

+ v (2.107)

When choosing the earth bound reference system corresponding to a zero
state in such a way that gravity coincides with the Z-axis and the Y-axis points
to the magnetic North, the gravity and magnetic field vector become:

g =





0
0
g



 h =





0
hH
hV



 (2.108)

Where g equals the gravitational acceleration of 9.81 m/s2 or 1 g and hH
and hV represent the local horizontal and vertical component of the magnetic
field. These components are subject to change over time and vary all over the
globe, yet can be calculated using geomagnetic models. In the area of Ghent,
Belgium, in March 2011, the horizontal component approximately equaled
19.6 nT and the vertical component 44.5 nT [29].

Using the expanded product of rotation matrices (2.5) and substituting
(2.108) in (2.107), the measurement model can be rewritten as:

Orientation Estimator Design 59

h









φ

θ

ψ







 =

















g sinθ
−g sinφ cosθ
g cosφ cosθ

−hH cosθ sinψ + hV sinθ
hH (cosφ cosψ − sinφ sinθ sinψ) − hV sinφ cosθ
hH (sinφ cosψ + cosφ sinθ sinψ) + hV cosφ cosθ

















+ v .

(2.109)
An evaluation of these formulas requires a minimum of six trigonometric

functions, 17 multiplications and five additions when reusing identical terms.

Quaternion

Let qg and qh be the quaternions associated with the gravity and magnetic
field vector as defined by (2.28). The expected sensor output can then be
calculated as the rotation of these quaternions as described in (2.29):

z =
[

zacc
zmag

]

= h(x) =
[

qx ⊗ qg ⊗ q−1
x

qx ⊗ qh ⊗ q−1
x

]

+ v (2.110)

Choosing the same earth-bound reference system as described in the Euler
angle version above and substituting the expressions from (2.108) in (2.110)
results in:

h

















w

x

y

z

















=

















2g (w y + x z)
2g (y z − w x)

g
(

w2 − x2 − y2 + z2
)

2hH (x y − w z) + 2hV (w y + x z)
hH
(

w2 − x2 + y2 − z2
)

+ 2hV (y z − w x)
2hH (w x + y z) + hV

(

w2 − x2 − y2 + z2
)

















+ v ,

(2.111)
which requires a minimum of 22 multiplications and 12 additions to eval-

uate when reusing as many terms as possible.

Measurement Noise

In all the above equations, v represents the sensor noise with covariance
matrix R. The output noise is assumed to be uncorrelated between the two
sensors and between the different axes. Furthermore, an even spread of the
noise is expected for every axis of each sensor, resulting in:

R =
[

racc I3×3 03×3

03×3 rmag I3×3

]

. (2.112)

60 Filter Design

The covariance of the noise present on the accelerometer output of a single
axis is denoted by racc , for the magnetometer rmag is used. The identity matrix
with three rows and columns is represented by I3×3 and the zero matrix of the
same dimensions by 03×3.

2.4.3.4 Linearisation

When using an EKF for estimation in a non-linear system, partial derivatives
of the model equations are required as described in section 2.3.3. Both the
measurement and the MARG process model equations are non-linear.

Euler angle MARG Process Model

Application of (2.57) to (2.105) results in:

∂f (x, u)
∂φ

=





1 + ∆T
(

−ry cosφ tanθ − rz sinφ tanθ
)

∆T
(

−ry sinφ + rz cosφ
)

∆T
(

−ry cosφ secθ − rz sinφ secθ
)





∂f (x, u)
∂θ

=





















∆T
(

−ry
sinφ
cos2θ

+ rz
cosφ
cos2θ

)

1

∆T
(

−ry
sinφ tanθ

cosθ
+ rz

cosφ tanθ
cosθ

)





















(2.113)

∂f (x, u)
∂ψ

=





0
0
1





Quaternion MARG Process Model

Using 2.57, the linearisation of (2.106) becomes:

Orientation Estimator Design 61

∂f (x, u)
∂w

=





















1

− ∆T
2 rx

− ∆T
2 ry

− ∆T
2 rz





















∂f (x, u)
∂x

=





















− ∆T
2 rx

1

− ∆T
2 rz

∆T
2 ry





















∂f (x, u)
∂y

=





















− ∆T
2 ry

∆T
2 rz

1

− ∆T
2 rx





















∂f (x, u)
∂z

=





















− ∆T
2 rz

− ∆T
2 ry

∆T
2 rx

1





















(2.114)

Euler Angle Measurement Model

Applying (2.58) to (2.107) yields the following linearisation:

∂h (x)
∂φ

=

















0
−g cosφ cosθ
−g sinφ cosθ

0
−hH (sinφ cosψ + cosφ sinθ sinψ) − hV cosφ cosθ
hH (cosφ cosψ − sinφ sinθ sinψ) − hV sinφ cosθ

















∂h (x)
∂θ

=

















g cosθ
g sinφ sinθ

−g cosφ sinθ
hH sinθ sinψ + hV cosθ

−hH sinφ cosθ sinψ + hV sinφ sinθ
hH cosφ cosθ sinψ + hV cosφ sinθ

















(2.115)

∂h (x)
∂ψ

=

















0
0
0

−hH cosθ cosψ
−hH (cosφ sinψ + sinφ sinθ cosψ)
hH (−sinφ sinψ + cosφ sinθ cosψ)

















62 Filter Design

Quaternion Measurement Model

In the quaternion case, (2.58) must be applied to (2.110) to result in the
following equations:

∂h (x)
∂w

=

















2gy
−2g x
2gw

−2hH z + 2hV y
2hH w − 2hV x
2hH x + 2hV w

















∂h (x)
∂x

=

















2g z
−2gw
−2g x

2hH y + 2hV z
−2hH x − 2hV w
2hH w − 2hV x

















∂h (x)
∂y

=

















2gw
2g z

−2gy
2hH x + 2hV w
2hH y + 2hV z
2hH z − 2hV y

















∂h (x)
∂z

=

















2g x
2gy
2g z

−2hH w + 2hV x
−2hH z + 2hV y
2hH y + 2hV z

















(2.116)

2.4.4 Orientation Estimation Procedure

Initially (k = 0) the state x is set to zero and the covariance P is chosen
to be a unitary matrix. These initial values will mostly differ from the actual
initial state of the sensor node, but, after a few iterations, the estimations will
quickly converge to the actual state.

2.4.4.1 Prediction

The first step in the KF is the prediction, which is based upon the process
model equation.

MFG Filter

Since (2.102) is actually a linear equation, standard discrete KF equations
(2.48) and (2.49) can be applied:

x̂−k = x̂k−1 + τ (x̂k−1 − x̂k−2) (2.117)

P−
k = Pk−1 + Q (2.118)

Note that in the above equations (x̂k−1 − x̂k−2) represents the uk term in
(2.39). For that reason, this term is not reflected in the equation for the a priori
estimate error covariance. Any errors in the process model are incorporated
in the process noise term wk and its covariance matrix Q.

Orientation Estimator Design 63

MARG Filter

Both process model equations, (2.105) for Euler angles and (2.106) for quater-
nions, are non linear. Therefore, linearisation is needed by either calculating
the Jacobian matrices and applying EKF procedures or computing sigma points
and using SPKF equations.

EKF The partial derivative of the state transition equation, (2.113) for a
Euler state or (2.114) for a quaternion state, must be evaluated at the previous
a posteriori estimate x̂k−1 and current input uk to give the Jacobian matrix Ak
as described by the linearisation procedure of the EKF (2.57):

AEulerk =
[

∂f (x, u)
∂φ

∣

∣

∣

x̂k−1,uk

∂f (x, u)
∂θ

∣

∣

∣

x̂k−1,uk

∂f (x, u)
∂ψ

∣

∣

∣

x̂k−1,uk

]

(2.119)

or

AQuaternionk =
[

∂f (x, u)
∂w

∣

∣

∣

x̂k−1,uk

∂f (x, u)
∂x

∣

∣

∣

x̂k−1,uk

∂f (x, u)
∂y

∣

∣

∣

x̂k−1,uk

∂f (x, u)
∂z

∣

∣

∣

x̂k−1,uk

]

(2.120)
The above expressions can then be used in the standard EKF prediction

equations (2.59).

SPKF First, sigma points reflecting the current state distribution are
determined based on (2.68). Then, the points are transformed using the non
linear state update equations (2.113) or (2.114) according to the SPKF pro-
cedure (2.68). The prediction and its error covariance can now be determined
as its distribution is reflected by the new set of sigma points.

2.4.4.2 Correction

The second step in the KF procedure consists of the correction. Both the
MARG and MFG filter use the exact same measurement model, so the correc-
tion procedure is also equal. As this model is clearly non linear, either EKF
or SPKF equations must be used.

Extended Kalman Filter

The Jacobian state-to-measurement transition matrix Hk must be determined
by evaluating the partial derivatives of the measurement model equation (2.115)
for Euler state or (2.116) for quaternion state at the a priori state estimation
x̂−k :

HEuler
k =

[

∂h(x)
∂φ

∣

∣

∣

x̂−k

∂h(x)
∂θ

∣

∣

∣

x̂−k

∂h(x)
∂ψ

∣

∣

∣

x̂−k

]

(2.121)

64 Filter Design

or

HQuaternion
k =

[

∂h(x)
∂w

∣

∣

∣

x̂−k

∂h(x)
∂x

∣

∣

∣

x̂−k

∂h(x)
∂y

∣

∣

∣

x̂−k

∂h(x)
∂z

∣

∣

∣

x̂−k

]

(2.122)

The correction can then be executed using the EKF equations (2.60).

Sigma Point Kalman Filter

The correction procedure starts by computing sigma points reflecting the a
priori estimate distribution as defined by (2.79). After transformation by the
measurement model equation (2.107) or (2.110), the measurement prediction
can be obtained as the weighted mean of the sigma points. The correction is
then completed by applying the SPKF equations.

2.4.5 Adaptive Filtering

This section only discusses the adaptive filtering technique for the MFG fil-
ter, the MARG version of the tracking filter already implements the standard
adaptive filtering principles discussed in section 2.3.6.

In the MFG version, all estimations are based on the output of two sensors.
When this output is distorted, the estimates of the filter also deteriorate.
Aside from circuit noise, the output of the sensors will also be distorted by
other effects. The accelerometer measures other accelerations besides gravity
caused by movement and shocks while the magnetic field of the earth might
be distorted by nearby cell phones or large quantities of metal.

In order to reduce the influence of these errors, a certain measure of the er-
ror must first be determined. This measure is found in the norm of both sensor
outputs. Since, under normal circumstances, this norm should remain approxi-
mately constant, any deviation from the expected value can be associated with
an error signal due to disturbances.

The next step is to find a way to reduce the influence a sensor output
has on the overall filter estimate. As the measurement covariance matrix R
dictates the uncertainty about the measurements, it is the perfect candidate
for adaptation. Denoting the variance of the circuit noise on the accelerometer
respectively magnetometer output by r0

acc and r0
mag, the adaptive formulas are

given by:

Parameter Estimation 65

racc = r0
acc

(

1 + ζ
∣

∣

∣
|an|2 − |g|2

∣

∣

∣

)

= r0
acc

(

1 + ζ
∣

∣

∣|an|2 − 1
∣

∣

∣

)

(2.123)

rmag = r0
mag

(

1 + ξ
∣

∣

∣|mn|2 − |h|2
∣

∣

∣

)

= r0
mag

(

1 + ξ
∣

∣

∣
|mn|2 − 1

∣

∣

∣

)

(2.124)

Both values can then be substituted in the expression for the measurement
noise covariance matrix (2.112).

In the above formulas, the measurement noise covariance is increased such
that the Kalman filter will rely more on the predicted estimate with its lower
process noise covariance and the other non disturbed sensor to determine its
a posteriori estimate.

2.5 Parameter Estimation

The orientation estimator algorithm uses several parameters to perform its
task. In order for the filter to deliver estimates of descent quality, all of
these parameters must be assigned values that reflect the process dynamics
as adequate as possible. Actual data of motion captures of humans performing
several tasks provides vital information for the estimation of the parameter
values as it represents the process to be estimated. Therefore, data analysis
of captures with an optical tracking system will be used to determine the
optimal parameter values.

First, the digital pre-filters used in the sensor output preprocessing are
designed. Then Kalman filter parameters need to be chosen. Mainly the noise
covariance matrices Q and R form an important aspect, yet, also the orientation
rate feedback gain τ used in the MFG filter needs to be determined.

2.5.1 Digital Pre-Filter

The sensor outputs contain an amount of high frequency noise generated
within the readout circuits and internal structure of the devices, but may also
be induced by outside sources. In order to remove this high frequency com-
ponent, low pass filters can be used. Given the fact that the sensor outputs
are delivered in digital form, these filters will also be digital.

2.5.1.1 Filter Concept

The general form of realistic digital filters is given by [30]:

66 Filter Design

y(n) = −
M
∑

m=1

am y(n−m) +
K
∑

k=0

bk x(n− k), (2.125)

where x(n) and y(n) denote the input and output of the filter and all
coefficients are constant and real numbers. Note that any output value y(n)
only requires previous values of the output and previous and current values
of the input to be calculated, making this filter actually implementable. In
the frequency domain, filters are often described by their transfer function
allowing a quick look at how the signal will be affected after filtering. For
(2.125), the corresponding transfer function is given by:

H(z) =

∑K
k=0 bk z

−k

1 +
∑M

m=1 am z
−m

=
B(z)
A(z)

(2.126)

The frequency response of the filter can be determined by evaluating H(z)
on the unit circle in z = ej2πfTs , where Ts = f−1

s represents the sample period.
This response is a periodic function and is entirely determined by its values
in the frequency band [0, fs/2].

Depending on the values of the coefficients, digital filters can be made to
be high pass, low pass, band pass or band stop. The order of the filter, which is
determined by the size of M and K , influences the steepness of the frequency
response. However, a higher order also increases the filter latency, which is
inherent to digital filters. It is the time which a signal takes to propagate
through a system.

When designing a digital filter, measures are used to describe the filter
characteristics in the frequency domain. The stop band and pass band are
the frequency bands where the filter respectively attenuates and transmits
the input signal. The cutoff frequency is where the pass and stop band meet.
The stop band attenuation defines the minimal reduction in signal strength
required in the pass band. The pass band ripple refers to the maximal ripple
in the pass band transmission.

Several standard filter forms are readily available and can easily be de-
signed using specialised software. Each of these filter types exhibits different
behaviour that should be accounted for when choosing an architecture. But-
terworth filters e.g. are designed to have a maximally flat frequency response
in the pass band and they roll off slowly and smoothly at the cutoff frequency
[31]. Chebychev filters show a ripple in either the pass band (Type I) or the
stop band (Type II or inverted Chebychev) and show a steeper roll off. Ellipti-
cal filters show a ripple in both the pass and the stop band, yet the transition
between both bands is the fastest available. Figure 2.8 displays frequency
responses of fifth order low pass filters of each type. The list of existing
architectures is endless though, many more can be found in literature [32].

Parameter Estimation 67

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f/fs

|H
(z

)|
Butterworth

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f/fs

|H
(z

)|

Chebychev Type I

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f/fs

|H
(z

)|

Chebychev Type II

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f/fs

|H
(z

)|

Elliptical

Figure 2.8: Digital filter architecture comparison by frequency response.

2.5.1.2 Sensor Output Filter Design

The sensor output signals should be low passed as this part of the frequency
band contains useful information on the orientation. A flat response of 0 dB
in the pass band is advisable in order to have equal transmission of low fre-
quencies. Furthermore, the latency of the filter should remain limited. Inverse
Chebychev filters are able to deliver all of these properties and offer a steeper
roll off at a lower order than Butterworth types can. Finally a choice of cut
off frequency must still be made based on the knowledge gained from signal
analysis.

The power spectrum of a signal gives an indication of which frequency
bands contain the most signal power. This spectrum can be calculated from
the Fourier transform. Given the discrete nature of the signals, the Fast
Fourier Transform will be used:

Sxx (f) = |X (k)|2 =

∣

∣

∣

∣

∣

N−1
∑

n=0

x(n) e−
j2πnk
N

∣

∣

∣

∣

∣

2

, (2.127)

where X (k) corresponds to the Fourier transform at frequency kfs/N , N is
the length of the data series and fs corresponds to the sample frequency.

68 Filter Design

Accelerometer

Figure 2.9 depicts the power spectrum of accelerometer output noise. The
spectrum reaches until 50 Hz as the accelerometer utilises a 100 Hz sampling
frequency. It is clear that much of the noise is concentrated in the frequency
band from 20 to 30 Hz. Furthermore, human motion is limited to very low
frequencies around a couple of Hertz. The cut off frequency could thus be
chosen around e.g. 5 Hz, with the stop band starting at least at 15 Hz.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

5

10

15

20

25

Frequency [Hz]

S
no

is
e(
f)

Power Spectrum of Acclerometer Noise

Figure 2.9: Power spectrum of accelerometer output noise.

A filter with the given characteristics can easily be designed using the
Filter Design and Analysis Tool of the Signal Processing toolbox in Matlab
[33]. Figure 2.10 shows the frequency response of the designed filter for a
100 Hz digital signal. The corresponding transfer function is given by:

H(z) =
0.059 − 0.018 z−1 − 0.018 z−2 + 0.059 z−3

1 − 2.049 z−1 + 1.507 z−2 − 0.377 z−3
(2.128)

It is a third order inverted Chebychev with a stop band starting at 12 Hz
and an attenuation of more then 20 dB. The pass band stretches out to 6 Hz
where the magnitude of the frequency response drops to −1 dB.

Parameter Estimation 69

0 5 10 15 20 25 30 35 40 45 50
−50

−40

−30

−20

−10

0

Frequency [Hz]

M
ag

ni
tu

de
[d

B
]

Digital Prefilter Frequency Response

Figure 2.10: Frequency response of the accelerometer pre-filter.

Magnetometer

Figure 2.11 shows the power spectrum of noise on the magnetometer output.
The signal was also sampled at 100 Hz. In contrast to the case of accelerome-
ter noise, the spectrum is much flatter and evenly spread. However, since the
same signal is meant to be measured, the same low pass filter can be used.

Gyroscope

The power spectrum of gyroscope output noise resembles the spectrum of
magnetometer output noise. The same filter can thus be reused for gyroscope
output pre-filtering.

2.5.2 Kalman Filter Parameters

Two important parameters that define the Kalman filter estimation procedure
are the process and measurement noise covariance matrices Q and R. The
measurement noise covariance is easily obtained as the sensors themselves are
readily available for testing. The process noise covariance however requires
data from the process that will be estimated in order to find a descent estimate.

Aside from these two covariances, three other parameters still need to be
determined: the feedback gain τ present in the MFG process model and the
adaptation parameters ζ and ξ . The first will again require analysis of data
sequences of actual motion as it involves the process model. The other two
will determine the suppression of disturbances on the sensor outputs and will

70 Filter Design

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Frequency [Hz]

S
N

oi
se

(f
)

Power Spectrum of Magnetometer Noise

Figure 2.11: Power spectrum of magnetometer output noise.

be estimated in simulation.

2.5.2.1 Measurement Noise Covariance

Determining the measurement noise covariance is in most cases fairly straight-
forward since it corresponds to the noise each of the sensor outputs exhibit.
This noise can easily be obtained by placing the sensors in an environment
where it is expected that their output is constant. In the case of inertial
sensors this naturally means no movement is involved. Any deviation from the
mean can then be designated as noise and the variance is quickly obtained.

Accelerometer Noise

An output sequence measured on the X-axis of an accelerometer placed on a
table in an office environment is displayed in figure 2.12. Note that the raw
output has first been subjected to calibration and pre-filtering before being
saved, as these steps also precede the Kalman filter. Care has been taken that
the digital pre-filter has reached steady state conditions, so that the transient
cannot influence the covariance.

Similar sequences were captured from various sensors on each of their axes.
The mean variance measured across 15 different sensors equals 2 × 10−5.

Parameter Estimation 71

0 5 10 15 20 25 30 35 40 45 50
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time [s]

A
cc

el
er

at
io

n
[g

]

Static Accelerometer Output

Figure 2.12: Static accelerometer output capture of 50 s.

Magnetometer Noise

Figure 2.13 displays the output sequence measured on the X-axis of the mag-
netometer on the same sensor node during the same time period as the se-
quence of the graph in figure 2.12. The magnetic field is presented in arbitrary
units as the output is normalised to the earths magnetic field strength during
calibration.

Again, the covariance was measured on 15 different nodes, which resulted
in an average of approximately 1 × 10−5.

Covariance Matrix

In section 2.4.3.3, certain assumptions were made involving the measurement
noise covariance matrix. It was assumed that measurement data was uncor-
related between both sensors and that no cross covariance existed between
different sensitivity axes. Measurements revealed that sensor cross covariance
values are 100 times smaller than the variances stated in the previous para-
graphs and that cross axis covariance is more than 10 times smaller. It is safe
to say that these values are negligible compared to the diagonal elements of
the covariance matrix.

Substituting the values determined in the previous paragraphs in the de-

72 Filter Design

0 5 10 15 20 25 30 35 40 45 50
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Time [s]

M
ag

ne
ti

c
F

ie
ld

[a
.u

.]

Static Magnetometer Output

Figure 2.13: Static magnetometer output capture of 50 s.

rived form of the measurement noise covariance matrix (2.112) finally results
in:

R =

















2 × 10−5 0 0 0 0 0
0 2 × 10−5 0 0 0 0
0 0 2 × 10−5 0 0 0
0 0 0 1 × 10−5 0 0
0 0 0 0 1 × 10−5 0
0 0 0 0 0 1 × 10−5

















.

(2.129)

2.5.2.2 Process Noise Covariance

The process noise covariance matrix can only be determined when data is
available that is representative for the process that will be estimated. When
this is the case, the process model can be applied to the data sequence and
the covariance of the error can be determined. This procedure can easily be
applied to the optical motion captures for the MFG filter, yet for the MARG
filter, the gyroscope output noise will dictate the process noise. In general
however, the process noise covariance should be lower in the MARG case, as
the gyroscope will provide much more qualitative information than the discrete

Parameter Estimation 73

derivation of the orientation estimate will ever give.

MFG

The process model equation (2.102) clearly depends on the choice of the feed-
back gain parameter τ . A logic consequence is that the covariance matrix of
the noise will also depend on this parameter. Furthermore, the representation
used for the state also effects the covariance, Euler angles are allowed to
change over a larger interval than quaternion elements.

Euler Figure 2.14 displays two graphs of the prediction error variance
for different values of the feedback gain parameter τ . The dark grey graph
was obtained by applying the process model equation (2.102) to the available
motion captured sequence of a walking and running person, while the light
grey graph used a capture of various actions ranging from simple arm lifting
tasks to jumping around. The plotted variance is an average over all limbs
and over all three Euler angles.

0 0.2 0.4 0.6 0.8 1 1.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

E
rr

or
V

ar
ia

nc
e

Error Variance of the Process Model versus Feedback Gain τ

Various Actions
Walking and Running

Figure 2.14: Variance of the a priori estimate error versus the feedback gain
parameter τ in case of a Euler angle state.

The graphs clearly exhibit a minimum at high τ values where the variance
reaches 0.23 for walking and running and as low as 0.01 for random tasks,

74 Filter Design

while at the origin the variance still amounts to much higher values. This
clearly indicates that their is a strong correlation between the current and
the previous orientation. Note that the graphs also indicate that the variance
highly depends on the performed tasks.

The proposed process noise covariance matrix of section 2.4.3.2 assumed
that each Euler angle has a similar distribution and that no cross covariance
exists. The cross covariance turns out to be at least ten times smaller than the
variances plotted in the graphs, which makes this assumption rather realistic.
However, differences between the variances on the individual axes do exist.
Figure 2.15 displays the variance on each of the axes for the data set with
random tasks, which would approximate real life situations as best as possible.
It is clear that the variance on the Y-angle is much lower and on the Z-axis
is much higher. For the walking and running sequence, the X-angle variance
dominated the others as these movements provoke large rotations around the
X-axis.

0 0.2 0.4 0.6 0.8 1 1.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ

E
rr

or
V

ar
ia

nc
e

Error Variance per Axis of the Process Model versus Feedback Gain τ

X-Angle Variance
Y-Angle Variance
Z-Angle Variance

Figure 2.15: Variance on each of the individual axes of the process model error
versus the feedback gain parameter τ in case of a Euler angle state.

Quaternion Applying the same procedure to the quaternion version of
the data sequence results in the graph displayed in figure 2.16. Again, a

Parameter Estimation 75

clear minimum is present at approximately the same location as was the case
for a Euler state. The error variance reaches 3.8 × 10−6 for the walking and
running and 9.5 × 10−7 for various random tasks. The cross covariance is
again negligible compared to the diagonal elements of the covariance matrix
and, contrary to the Euler case, the variance is very much alike for each of
the state elements. This means that the postulated process error covariance
matrix form of equation (2.103) is valid for the quaternion case.

0 0.2 0.4 0.6 0.8 1 1.20

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10−5

τ

E
rr

or
V

ar
ia

nc
e

Error Variance of the Process Model versus Feedback Gain τ

Various Actions
Walking and Running

Figure 2.16: Variance of the a priori estimate error versus the feedback gain
parameter τ in case of a quaternion state.

MARG

The process noise covariance matrix in the MARG filter is a direct result of
the gyroscope output noise. Therefore, the covariance matrix of the gyroscope
output noise must first be determined. A data sequence captured from the
X-output of a gyroscope in static conditions is displayed in figure 2.17. The
mean variance measured across several sensors is 1 × 10−2. As was the case
with the other sensors, all axes demonstrate similar noise variance and cross
covariance is negligible.

76 Filter Design

0 5 10 15 20 25 30 35 40 45 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time [s]

A
ng

ul
ar

R
at

e
[◦ /

s]

Static Gyroscope Output

Figure 2.17: Static gyroscope output capture of 50 s.

Euler In order to find the relation between the gyroscope and process
noise covariance, equation (2.11) must be used to convert the body rates to
Euler rates. This conversion is linear, at least from the point of view of the body
rates. The covariance of the process noise now still depends on the orientation,
yet each Euler angle can be swept across its possible values and the resulting
covariance can be calculated. Assuming each possible combination of angles
has an equal possibility of occurring, the process noise covariance is found as
the average of all of the resulting matrices. Applying the described method
results in the following covariance matrix:

Q = ∆T 2





0.6 0 0.0001
0 0.01 0.0001

0.0001 0.0001 0.6



 (2.130)

Cross covariance terms are yet again negligible. Note however that due to
the singular orientations of the gimbal lock, θ has not been averaged over its
entire range as this results in an infinite variance. This immediately explains
the higher values on the X- and Z-angle.

Quaternion Applying the same method as described above, yet using
equation (2.30) as transformation equation, the process noise covariance matrix

Parameter Estimation 77

equals:

Q = ∆T 2









1.9 0 0 0
0 1.9 0 0
0 0 1.9 0
0 0 0 1.9









× 10−3 (2.131)

This result is obviously a reflection of the fact that the transformation in the
quaternion case doesn’t include any trigonometric functions or singularities.
Cross axis terms are very close to zero and diagonal terms are all equal.

2.5.2.3 Feedback Gain

As the feedback gain is used to describe the process in the MFG filter, data
captures will again provide very useful information. The process model equa-
tion (2.102) attempts to estimate a future value based on previous outputs. In
signal processing, this technique is often referred to as autoregressive mod-
eling [30], where a signal value s(n) is approximated by a linear combination
of K previous values:

sp(n) =
K
∑

k=1

ak s(n− k) (2.132)

Denoting d as the difference between two subsequent estimates x̂ , the
prediction equation (2.117) can be rewritten in the form of the autoregressive
model with K = 1:

dp(k) = τ d(k − 1) (2.133)

According to autoregressive modeling, τ should optimally be chosen as
follows:

τopt =
Rdd(1)
Rdd(0)

, (2.134)

where Rdd represents the autocorrelation function:

Rdd(i) =
∑

k

d(k)d(k − i) (2.135)

This procedure can easily be applied to the available captures describing
human motion.

78 Filter Design

Euler

Calculation of the mean over all available datasets yields an optimal value
for the feedback parameter of 0.91. However, this value greatly depends on
the executed movement and on the body part which is observed. Figure 2.18
displays the results of the autoregressive analysis on three captures of walking
and running sequences. Each sequence consists of nine different orientations
corresponding to several body parts.

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

Sequence Number

R
dd

(1
)/
R

dd
(0

)

Optimal Feedback Parameter Value

X
Y
Z

Figure 2.18: Optimal feedback parameter estimate per Euler axis calculated on the
walking and running sequence.

All three Euler angle series clearly follow a similar pattern, highs and lows
clearly match. Furthermore, body parts give similar results for the feedback
value across the three captures. The torso e.g. , present at sequence numbers
9, 18 and 27, exhibits very low correlation.

Quaternion

Autoregressive analysis on the quaternion version of the movement captures
indicate an optimal value of 0.89. The same trends that were found in the
Euler version also apply here. The fact that the correlation turns out to be
slightly lower is related to the fact that the quaternion must be normalised in
order to represent an orientation.

Filter Simulation 79

2.6 Filter Simulation

As the focus of this work lies on gyroless orientation tracking, only simulations
of the MFG filters will be presented in this section. All of the simulations will
assume that the sensors are sampled at a rate of 100 Hz and, as a result,
the output will have the same sample frequency. Three types of simulations
will be discussed: step response, noise response and the influence of motion
disturbance.

2.6.1 Step Response

The step response describes the output of a filter when a sudden change is
applied at the input. In this case, a sudden change in sensor output values
corresponding to a rotation will be applied. The filter should respond to this
and the output will evolve towards the new orientation.

Two different orientation steps will be simulated: a 90◦ tilt rotation around
the X-axis and a 90◦ heading rotation. In both situations, the starting point
is the neutral position where all of the Euler angles equal zero or where the
orientation quaternion has zero on its vector part and one on the scalar part.
For the tilt rotation, the end point corresponds to [φ, θ, ψ] = [90, 0, 0] for Euler
angles and q = [

√
2/2,

√
2/2, 0, 0] for the quaternion filter. The heading step

will end with [φ, θ, ψ] = [0, 0, 90] or qx = [
√

2/2, 0, 0,
√

2/2]. The reason that
both are simulated lies in the fact that the gravity vector coincides with the
Z-axis. A heading rotation will thus form a bigger challenge for the filter
as the accelerometer will not provide any information about the change in
orientation.

All of the simulations in this section will receive noiseless sensor data to
calculate their output from. The influence of noise on the sensor outputs is
analysed in the subsequent section.

2.6.1.1 Tilt Step

Both the Euler and the quaternion version of the filter are simulated with
sensor output sequences corresponding to an instant rotation of 90◦ around
the X-axis. At first, the feedback value τ is set to zero. Later, the influence of
an increasing feedback value is shown.

Euler

Figure 2.19 shows the response of the tracking filters to a tilt step. Note
that the outputs of the UKF and CDKF almost match exactly, therefore only
one curve is given for the SPKFs. It is clear that both filter types manage to
track the step response, although the EKF takes a lot more time to achieve

80 Filter Design

its steady state value. The transient period lasts up to almost 3 s. Figure
2.20 shows more detail of the transient on the SPKF output signal. The input
signal has also been plotted as a reference. Clearly, the transition here is
extremely fast and takes only 3 samples or 30 ms to complete. This is one
hundredth of the transition time seen in the EKF response.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

20

40

60

80

Time [s]

P
hi

A
ng

le
[◦]

Step Response of the Euler Angle Filter

Sigma Points Output
Extended Output

Figure 2.19: Response of the Euler angle state filters to a sudden 90◦ rotation
around the X-axis.

0.99 0.995 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04

0

20

40

60

80

Time [s]

φ
A

ng
le

[◦]

Step Response of the Euler Angle Filter

Input
Sigma Points

Figure 2.20: Zoom of the step input and sigma point filter response.

Filter Simulation 81

Quaternion

The tilt responses of the quaternion version of the filters is shown in figure
2.21. In this case, all three filters show a similar transient time. The EKF
takes 20 ms, while the SPKFs take 30 ms. However, it is important to mention
that both sigma point filters suffer from a slight overshoot, before settling to
the final value.

0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

0

0.2

0.4

0.6

0.8

Time [s]

Q
ua

te
rn

io
n

X
-C

om
po

ne
nt

Step Response of the Quaternion Filter

Input
Extended
Unscented
Central Difference

Figure 2.21: Response of the quaternion state filters to a sudden 90◦ rotation around
the X-axis.

Feedback

Figure 2.22 shows several graphs of the tilt response of the EKF with Euler
state at different values of the feedback parameter τ . With increasing τ , the
settling time of the filter output clearly decreases. However, at a certain point,
overshoot occurs and ringing is present when τ is increased even further. The
settling time as a function of τ is plotted in figure 2.23. The optimal value
for the feedback parameter from this graph lies around 0.8, which is slightly
lower than the value determined in section 2.5.2.3.

As the settling time on the other filter outputs is already very short, no
improvement was found by increasing the feedback value. Only very small
differences were found and no ringing occurred.

2.6.1.2 Heading Step

The filters are presented with a sudden rotation of 90◦ around the Z-axis. A
slower response to this change is expected as the estimation will now only be
based upon the magnetometer output.

82 Filter Design

1 2 3 4 5 6 7 8

0

50

100

150

Time [s]

φ
A

ng
le

[◦]

Step Response of the Extended Euler Filter

τ = 0.2
τ = 0.4
τ = 0.6
τ = 0.8
τ = 0.9
τ = 1

Figure 2.22: Step response of the extended Euler type filter with increasing value of
feedback parameter τ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

τ

T
im

e
[s

]

Settling Time versus Feedback Value

Figure 2.23: Settling time of the tilt response of the EKF with Euler state to 1 % of
the final value for varrying value of the feedback parameter τ .

Euler

The response of the EKF to a heading step almost equals the response to a
tilt step. However, the SPKF response shows increased settling time as can
be seen in the graphs displayed in figure 2.24. The settling time for heading
steps is approximately 60 ms, twice the settling time simulated for a tilt step.

More important to mention though, is the fact that during the transition on
the heading angle ψ, both tilt angles φ and θ show transient responses with

Filter Simulation 83

peaks up to 14◦. The cause of these transients is found in the high sensibility
of the filter and the fact that the heading rotation takes place around the
gravity vector. The filter immediately responds to the change in the sensor
values and attempts to find the matching orientation. Due to the fact that
the accelerometer output has not changed, no information is gained from this
sensor and the corresponding part of the innovation will also equal zero. Later
on, when wrong values of the tilt angles φ and θ propagate through the filter,
the accelerometer output will contribute and help correcting these errors.

0.98 1 1.02 1.04 1.06 1.08 1.1
0

10

20

30

40

50

60

70

80

90

Time [s]

A
ng

le
[◦]

Tilt and Heading Step Output

Heading Step
Tilt Step

Figure 2.24: Tilt and heading step response of the Euler SPKFs.

Quaternion

The response of the quaternion filters to a heading step is displayed in figure
2.25. For the EKF, the settling time increases to 70 ms compared to the 20 ms
settling time for a tilt step, while for the UKF overshoot occurs without any
increase in settling time. As was the case for the Euler SPKFs, transients are
visible on the other quaternion components reaching almost 20 % of the step
size.

2.6.2 Noise Response

The noise response is the output of the filter to noisy sensor data correspond-
ing to a fixed orientation. The neutral orientation is chosen as this is also the
starting value for the filter. This way, no transient will be present at the start
of the output sequence.

Three different noise sequences will be considered: simulated noise cre-
ated by a random generator, real noise taken from the output of stationary

84 Filter Design

0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Time [s]

Q
ua

te
rn

io
n

C
om

po
ne

nt

Tilt and Heading Step Output

Heading - EKF
Heading - UKF
Tilt - EKF
Tilt - UKF

Figure 2.25: Tilt and heading step response of the quaternion EKF and UKF.

sensors and real noise which has been filtered by a digital pre-filter.

2.6.2.1 Simulated Noise

Gaussian white noise signals are generated with variances equal to the ones
measured on the sensor output signals and given in section 2.5.2.1. These
sequences are then added to static sensor signals corresponding to neutral
orientation and the output of the filter is analysed.

Euler

Figure 2.26 displays graphs of the variance on each axis, for each filter type
versus several values of the feedback parameter. As expected by the graphs for
the step response, the EKF has much lower variances due to slower response
and longer settling. The variance on this filter also increases strong with
increasing feedback value, as can be expected from the results in the previous
section. On both filters, the ψ variance is ten times higher than the variance
on the tilt angles. This is again a confirmation to the fact that heading is
harder to track due to the coincidence of the Z-axis with the gravity vector.

Quaternion

The variance on the output of the quaternion state filters also confirms the
results from the previous section. Both the EKF and the SPKFs show similar
variance on their noise response. The main difference lies in the fact that the
variance on the scalar component of the quaternion is much lower than the
variance on the vector components. This is a direct result of the normalisation

Filter Simulation 85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−4

10−3

10−2

10−1

100

τ

V
ar

ia
nc

e

Variance of the Noise Response versus Feedback

EKF - φ
EKF - θ
EKF - ψ
SPKF - φ
SPKF - θ
SPKF - ψ

Figure 2.26: Variance of the Euler filter response to simulated noise for different
values of the feedback parameter.

that takes place every cycle and the fact that the scalar component must equal
1 in the neutral position, while the vector part remains zero. Within the vector
component, the same relations are seen between components, the variance on
the heading component is ten times the variance on the tilt components.

2.6.2.2 Real Noise

Real noise samples are taken from the sensor outputs and added to the simu-
lated neutral position outputs. Once again, the output of the filter is analysed
and compared to the simulated noise case. Furthermore, the noise response
of the filter will also be determined when the sensor data is first filtered using
the digital filter designed in section 2.5.1.2.

Euler

Figure 2.27 displays the variance on the noise response of the EKF response
to simulated and real noise. Both graphs exhibit the same behaviour with
increasing feedback. The real noise response variance lies approximately ten
times higher than the simulated noise response. The reason for this difference
lies in the distribution of the real sensor noise. Contrast to the simulated
noise, the real noise does not exactly follow a normal distribution. This is
especially true for the accelerometer noise as follows from its power spectrum
displayed in figure 2.9.

86 Filter Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−4

10−3

10−2

10−1

100

101

τ

V
ar

ia
nc

e

Noise Response Variance versus Feedback

Real Noise - φ
Real Noise - θ
Real Noise - ψ
Simulated Noise - φ
Simulated Noise - θ
Simulated Noise - ψ

Figure 2.27: Variance of the Euler EKF response to simulated and real noise for
different values of the feedback parameter.

The SPKFs show a similar increase in variance as can be deducted from
table 2.1. Since the feedback does not greatly affect these filters, only the
values for zero feedback are given.

φ θ ψ

Simulated Noise 0.0206 0.0355 0.221
Real Noise 0.162 0.418 2.034

Table 2.1: Variance on the noise response of the Euler SPKFs with zero feedback
value.

Quaternion

Table 2.2 lists the variances on the noise response of the filters when zero
feedback is applied. As with the Euler case, the real noise introduces variances
that are approximately ten times higher than with simulated noise. The only
exception is the scalar component, where the increase is even higher. Yet
again, the normalisation is to blame for this.

Pre-Filter

Tables 2.3 and 2.4 list the variance on the filtered noise response of all of
the filters when zero feedback is applied. It is clear that aside from the Euler
EKF, all filters exhibit improved responses with much lower variances. In the

Filter Simulation 87

Filter Component Simulated Noise Real Noise

EKF

w
x
y
z

1.29 × 10−10

1.53 × 10−6

2.55 × 10−6

1.52 × 10−5

4.47 × 10−8

1.22 × 10−5

2.96 × 10−5

1.39 × 10−4

SPKF

w
x
y
z

1.29 × 10−10

1.61 × 10−6

2.61 × 10−6

1.52 × 10−5

4.99 × 10−7

2.09 × 10−5

3.57 × 10−5

1.75 × 10−4

Table 2.2: Variance on the noise response of the quaternion filters with zero feedback
value.

Euler EKF case, no improvement is found as this filter already reacts to slow
to notice any difference. These results indicate that the digital pre-filters
should definitely be applied to the sensor output in order to improve the noise
response.

Filter Component Real Noise Filtered Real Noise

EKF
φ

θ

ψ

5.02 × 10−4

4.73 × 10−3

6.97 × 10−2

4.70 × 10−4

4.59 × 10−3

6.83 × 10−2

SPKF
φ

θ

ψ

0.162
0.418
2.034

0.0145
0.0533
0.496

Table 2.3: Variance on the real and filtered noise response of the Euler filters with
zero feedback value.

Filter Component Real Noise Filtered Real Noise

EKF

w
x
y
z

4.47 × 10−8

1.22 × 10−5

2.96 × 10−5

1.39 × 10−4

8.59 × 10−10

1.10 × 10−6

3.99 × 10−6

3.71 × 10−5

SPKF

w
x
y
z

4.99 × 10−7

2.09 × 10−5

3.57 × 10−5

1.75 × 10−4

8.54 × 10−10

1.36 × 10−6

3.94 × 10−6

3.72 × 10−5

Table 2.4: Variance on the real and filtered noise response of the quaternion filters
with zero feedback value.

88 Filter Design

2.6.3 Motion Disturbance

Simulation of motion disturbance requires the addition of error signals that
correspond to motion on the output of the accelerometer. More specifically, the
influence on the output orientation is analysed when a certain sinusoidal dis-
turbance is present on one of the sensor axes of the accelerometer. Note that
a similar analysis could also be executed for disturbance on the magnetometer
signal, though the conclusions should generally correspond.

The simulated accelerometer signal that is fed to the filter is shown in
figure 2.28. It corresponds to static, neutral orientation and includes a part
where the X-axis output is disturbed by a sinusoidal signal with an amplitude
equal to 1 g and a frequency of 1 Hz.

0 1 2 3 4 5 6

−1

−0.8
−0.6
−0.4
−0.2

0

0.2
0.4
0.6
0.8

1

Time [s]

A
cc

el
er

at
io

n
[g

]

Motion Disturbed Accelerometer Signal

X
Y
Z

Figure 2.28: Motion disturbed accelerometer signal.

The output of the filter is analysed by determining the mean square error
of the output signal with respect to the expected output of static, neutral
orientation. When no feedback is applied (τ = 0) and no noise adaptation
is present (ζ = 0), the output of the Euler UKF follows the graphs in figure
2.29.

The mean square error amounts to 4.5◦, 16.5◦ and 35◦ on roll, pitch and
yaw angles respectively. In the following, the influence of the adaptive filtering
and feedback parameter is varied in an attempt to reduce this error.

Note that by placing the disturbance on the X-axis, the worst possible
distortion is seen on the output angles. Figures 2.30 and 2.31 show the
output orientation of the filter for motion disturbance on respectively the Y-
and Z-axis. Remark that the θ graph lies underneath the ψ graph in both
figures. Given the fact that gravity coincides with the Z-axis, any disturbance
in this direction does not really influence the output of the filter. The reason

Filter Simulation 89

0 100 200 300 400 500 600 700
−80

−60

−40

−20

0

20

40

60

80

Time [s]

E
ul

er
A

ng
le

[◦]

Motion Disturbance Output

φ

θ

ψ

Figure 2.29: Distorted output signal on the Euler UKF due to motion disturbance.

0 1 2 3 4 5 6 7
−20

−10

0

10

20

Time [s]

E
ul

er
A

ng
le

[◦]

Y-Axis Motion Disturbance

φ

θ

ψ

Figure 2.30: Distorted output signal on the Euler UKF due to motion disturbance on
the Y-axis.

that a disturbance on the Y-axis results in less distortion lies in the choice of
aligning the North direction with the Y-axis. Rotating the sensor node around
the X-axis will rearrange the magnitude of the magnetic field on both Y and
Z-axis, giving the filter a reasonable error on both sensor readings. Yet a
rotation around the Y-axis introduces an expected magnetic measurement on
the X-axis which is not reflected in the sensor readings. This triggers the
filter to drastically change the orientation and introduces large errors.

For the quaternion filters, similar graphs are obtained. Figure 2.32 shows
the EKF output due to motion disturbance, which greatly resembles the graphs

90 Filter Design

0 1 2 3 4 5 6 7

−0.01

0

0.01

0.02

Time [s]

E
ul

er
A

ng
le

[◦]

Z-Axis Disturbance

φ

θ

ψ

Figure 2.31: Distorted output signal on the Euler UKF due to motion disturbance on
the Z-axis.

0 1 2 3 4 5 6 7

−0.5

0

0.5

1

Time [s]

Q
ua

te
rn

io
n

C
om

po
ne

nt

Quaternion Filter Output of Motion Disturbance

w
x
y
z

Figure 2.32: Distorted output signal on the quaternion EKF due to motion
disturbance.

in figure 2.29. When the disturbance is generated on the Z-axis however, no
distortion is seen on the quaternion output.

2.6.3.1 Adaptive Filtering

The adaptive filtering parameter ζ was introduced in order to correct distor-
tion caused by motion disturbance. It is thus expected that increasing this
parameter will reduce the error in the output signal.

Filter Simulation 91

Euler

Extended Figure 2.33 shows the evolution of the mean square error on
the heading angle when the adaptive parameter ζ is increased. The heading
was chosen as this angle displays the highest distortion. Several graphs
are given for different frequencies of the disturbance signal. Note that with
increasing frequency, the error reduces significantly due to the slow response
of the Euler type EKF. Furthermore, higher frequencies can be filtered with an
additional digital output filter. Also note that the sensor signal has not been
preprocessed, which means that the mean square output error in the figure
corresponds to the worst case scenario.

100 101 102 103 104 105 106
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ζ

M
ea

n
S

qu
ar

e
E

rr
or

[◦]

Mean Square Error on ψ versus ζ

f = 2 Hz
f = 4 Hz
f = 6 Hz
f = 8 Hz
f = 10 Hz

Figure 2.33: Mean square error on the heading angle output of the EKF for
increasing values of the adaptive parameter and different motion disturbance

frequencies.

The graph clearly indicates that below ζ = 1000, no significant reduction
is seen on the output error. From that point on however, improved filter perfor-
mance is visible. At ζ = 1 × 106, saturation seems to occur and higher values
are no longer offering any better behaviour. It must however be stressed that
values this high lead to poor performance as the measurement noise covari-
ance will already be adjusted due to output noise and small calibration errors.
This is easily understood when examining (2.123). With a high ζ , the second
term between the brackets will quickly overpower the first term and increase
racc when no motion is present. This way, the filter will be slowed even more.

92 Filter Design

Sigma Point The mean square error on the heading for the SPKFs versus
the value for the adaptive parameter is given in figure 2.34. A big difference
with the EKF graphs is that the frequency of the disturbance barely influences
the mean square error when ζ is almost zero. The reason lies of course in the
higher sensitivity of the sigma point filters which makes them react equally to
any frequency of motion disturbance.

100 101 102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ζ

M
ea

n
S

qu
ar

e
E

rr
or

[◦]

Mean Square Error on ψ versus ζ

f = 2 Hz
f = 4 Hz
f = 6 Hz
f = 8 Hz
f = 10 Hz

Figure 2.34: Mean square error on the heading angle output of the SPKFs for
increasing values of the adaptive parameter.

Generally, the curves follow a similar pattern as in figure 2.33. Low values
of ζ have almost no influence, suddenly the mean square error drops and
finally saturation occurs. The transition period runs roughly from ζ = 10 to
ζ = 1 × 104, which covers much more acceptable values for the adaptation.
For the graphs in the figure, ζ = 1000 manages to reduce the mean square
error to at least half the initial value.

Contrast to the EKF case, the value of ζ at which these changes in be-
haviour occur depend on the frequency of the disturbance. A lower frequency
requires a much higher adaptation to obtain the same mean square error. The
reason lies in the update nature of the Kalman filter. Each new estimate
depends on the previous estimate and the noise covariances. A high mo-
tion disturbance frequency causes the measurement noise covariance to rise
quicker and manages to keep the error on the output low, while a low fre-
quency allows the filter to change its estimates before having a higher noise
covariance block the error.

Filter Simulation 93

Quaternion

In the quaternion case, the difference between the EKF and SPKFs is very
small. The graphs follow a similar trend as in the case of the Euler SPKFs.
Figure 2.35 displays the mean square error on each of the quaternion com-
ponents when the disturbance has a frequency of 5 Hz. Choosing ζ = 1000
again reduces the output error significantly.

100 101 102 103 104 105
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

ζ

M
ea

n
S

qu
ar

e
E

rr
or

Mean Square Error on Quaternion Components versus ζ

w
x
y
z

Figure 2.35: Mean square error on the quaternion output of the EKF for increasing
values of the adaptive parameter and for a disturbance with a 5 Hz frequency.

2.6.3.2 Feedback Parameter

At first glance, one would expect that a higher feedback parameter will in-
crease the error due to motion disturbance as it enhances the error even further
by adding a fraction of the error in the prediction equation. This is indeed
correct, however, as was shown by figures 2.14 and 2.16 in section 2.5.2.2,
the process noise covariance can be reduced when τ is increased. A reduc-
tion of Q would allow the filter to trust more on the prediction, which would
automatically mean that the sensor outputs will be weighed less and the mo-
tion disturbance signal would have less influence on the output. However, a
decrease of the process noise covariance also means that the step response
settling time will increase. A trade off is imminent.

94 Filter Design

Euler

Extended Figure 2.36 shows the resulting mean square error of the Eu-
ler EKF with increasing feedback and for different values of the process noise
covariance diagonal element. In the simulations to obtain the figure, the adap-
tive parameter ζ has been set to 1000 and the disturbance had a frequency
of 5 Hz. The above theory is reflected in the graphs as the mean square error
clearly rises when the feedback is increased. However, this increase can be
countered by reducing the process noise covariance. When looking at the
graph of optimal process noise covariance versus the feedback in figure 2.14,
q may easily be reduced from 0.5 at τ = 0 to 0.05 at τ = 0.8. According to
the graphs in figure 2.36, changing both values will have little influence on
the mean square error.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3

10−2

10−1

100

101

102

103

τ

M
ea

n
S

qu
ar

e
E

rr
or

[◦]

Mean Square Error on ψ versus τ

q = 1
q = 1 × 10−1

q = 1 × 10−2

q = 1 × 10−3

q = 1 × 10−4

Figure 2.36: Mean square error on the heading angle output of the EKF for
increasing values of the feedback parameter and different process noise covariance.

Contrast to the expectations, decreasing the value of q has little or no
influence on the settling time of the step response. This is again a consequence
of the low sensitivity of the Euler EKF resulting in a fairly slow response time
and the fact that increasing τ has a bigger influence on the settling time.

Sigma Point Figure 2.37 shows the output graphs of the Euler SPKFs
in the same conditions as mentioned above. The graphs point to the same
conclusion as was the case for the EKF: decreasing q when increasing τ

allows a similar mean square error on the output.

Filter Simulation 95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3

10−2

10−1

100

101

τ

M
ea

n
S

qu
ar

e
E

rr
or

[◦]

Mean Square Error on ψ versus τ

q = 1
q = 1 × 10−1

q = 1 × 10−2

q = 1 × 10−3

q = 1 × 10−4

Figure 2.37: Mean square error on the heading angle output of the SPKFs for
increasing values of the feedback parameter and different process noise covariance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−2

10−1

100

101

τ

S
et

tl
in

g
T

im
e

[s
]

Tilt Step Respons Settling Time versus τ

q = 1
q = 1 × 10−1

q = 1 × 10−2

q = 1 × 10−3

q = 1 × 10−4

Figure 2.38: Tilt step response settling time of the Euler SPKFs for increasing
values of the feedback parameter and different process noise covariance.

In the case of the SPKFs, the choice of q has a bigger influence on the set-
tling time of the step response as can be seen in figure 2.38. With increasing
τ , all of the graphs show a decrease in settling time before increasing after-
wards. The reason is that at a certain point, overshoot occurs which causes

96 Filter Design

the settling time to increase. Furthermore, it is clear that a reduction of q
will in any case increase the settling time. Setting the upper bound to 0.1 s,
q should remain above 1 × 10−2.

Quaternion

The graphs resulting from simulations of the quaternion state filter follow
similar trends as was the case for the Euler SPKFs. Increasing τ must be
coupled with a decrease in q to obtain a similar mean square error on the
output. In order to keep the settling time on the tilt step response below 0.1 s,
q should now be larger than 1 × 10−6.

2.7 Conclusion

After giving a thorough overview of Euler angles and quaternions as a means
for representing three dimensional orientation and introducing the Kalman
filter and all of its variations, an orientation tracking algorithm was presented.
Several flavours of the filter were implemented supporting either an MFG or
MARG type sensor node, based on either an EKF or SPKF architecture and
using either Euler or quaternion representation. Additional features, such as
feedback and adaptive noise covariance were added to improve the MFG type
filter’s performance.

Using real life motion captures from an optical tracking system, all pa-
rameters of the filters were estimated to ensure an adequate modeling of the
problem is obtained. The process noise covariance depends upon the newly
introduced feedback parameter τ , whose optimal value was obtained through
auto regression analysis of the captures. A third order inverted Chebychev fil-
ter was also proposed in order to reduce the amount of high frequency output
noise of the sensors. The pass band of this digital filter extends to 6 Hz with
the stop band starting at 12 Hz and offering a minimum of 20 dB attenuation.

Finally, the filter was simulated in order to test its characteristics and
determine an estimate for the adaptive parameters in the system. From these
simulations it is clear that the EKF Euler type filter has a much slower re-
sponse than all other filters. Clearly, the first order approximation by calcu-
lation of the Jacobian matrix does not suffice for the highly non-linear mea-
surement model containing several trigonometric functions. For this reason,
this filter will not be considered in the following chapters, as it will always
be outperformed by the other filters.

Different step response behaviour was obtained for tilt and heading steps.
This is a clear reflection of the fact that the gravity vector coincides with the
Z-axis. Settling times range from 30 ms for tilt to 60 ms for heading changes.

Conclusion 97

Noise response simulations confirmed that the sensor output digital pre-
filter reduces the influence of the high frequency noise on the filter output.
Also, simulated white noise turned out to be a bad approximation of sensor
noise due to the poor whiteness of the latter. The variance on the output
signals introduced by the noise is ten times higher with actual sensor noise.
However, pre-filtering reduces this variance back to approximately the same
level as the variance of the simulated noise response.

Finally, motion disturbance simulations were executed where a disturbing
sinusoidal signal was added to one of the accelerometer outputs. It has been
shown that a value of 1000 for the adaptive filtering parameter ζ significantly
reduces the mean square error on the output of both the Euler and quaternion
type filters. Furthermore, the increase of this error due to higher values of
the feedback parameter τ can be countered by reducing the process noise
covariance at the cost of an increased step response settling time.

98 References

References

[1] E.R. Bachmann, R.B. McGhee, X. Yun, and M.J. Zyda. Rigid Body Dy-

namics, Inertial Reference Frames, and Graphics Coordinate Systems: A

Resolution of Conflicting Conventions and Terminology. In Proceedings
of the IEEE Symposium on Computational Intelligence in Robotics and
Automation, 2000.

[2] J. Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and

Rotation Vectors, October 2006.

[3] H. Goldstein. Classical Mechanics, chapter 4-4 The Euler Angles, pages
143–148. Addison-Wesley, 1980.

[4] W.T. Thomson. Introduction to Space Dynamics. Wiley, 1961.

[5] L.D. Landau and E.M. Lifschitz. Mechanics. Pergamon Press, Oxford,
England, 1976.

[6] H. Goldstein. Classical Mechanics, chapter Appendix B: Euler Angles in
Alternate Conventions, pages 606–610. Addison-Wesley, 1980.

[7] P. Kelland and P.G. Tait. Introduction to Quaternions. Macmillan, London,
1904.

[8] W.R. Hamilton. On a New Species of Imaginary Quantities, Connected

with the Theory of Quaternions. In Proceedings of the Royal Irish
Academy, volume 2, pages 424–434, 1844.

[9] D. Hearn and M.P. Baker. Computer Graphics: C Version, pages 419–420
and 617–618. Prentice-Hall, Englewood Cliffs, NJ, 1996.

[10] J.M. Cooke, M.J. Zyda, D.R. Pratt, and R.B. McGhee. NPSNET: Flight

Simulation Modeling Using Quaternions. Presence, 1(4):404–420, 1992.

[11] R.E. Kalman. A New Approach to Linear Filtering and Prediction Prob-

lems. Transaction of the ASME Journal of Basic Engineering, 82D:35–45,
1960.

[12] Peter S. Maybeck. Stochastic Models, Estimation and Control, volume 1,
chapter 1. Academic Press, 111 Fifth Avenue, New York, New York 10003,
USA, 1979.

[13] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter.
ACM, 2001.

References 99

[14] S. Julier and J. Uhlmann. A New Extention of the Kalman Filter to

Nonlinear Systems. In Proceedings of SPIE International Society of
Optical Engineers, pages 182–193, Orlando, Florida, USA, April 1997.

[15] R. Van Der Merwe. Sigma-Point Kalman Filters for Probabilistic Infer-

ence in Dynamic State-Space Models. PhD thesis, OGI School of Science
& Engineering, Health & Science University, Oregon, USA, 2004.

[16] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Steward. LINPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia,
1979.

[17] W.H. Press, S. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University
Press, 1992.

[18] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A New Approach for Fil-

tering Nonlinear Systems. In Proceedings of the American Control Con-
ference, pages 1628–1632, 1995.

[19] K. Ito and K. Xiong. Gaussian Filters for Nonlinear Filtering Problems.
IEEE Transactions on Advanced Control, 45(5):910–927, May 2000.

[20] M. Norgaard, N. Poulsen, and O. Ravn. New Developments in State Esti-

mation for Nonlinear Systems. Automatica, 36(11):1627–1638, November
2000.

[21] S. Julier. The Scaled Unscented Transformation. In Proceedings of the
American Control Conference, volume 6, pages 4555–4559, May 2002.

[22] J. Stirling. Methodus Differentialis, Sive Tractatus de Summation et In-

terpolation Serierum Infinitarium, 1730.

[23] M. Norgaard, N. Poulsen, and O. Ravn. Advances in Derivative-Free

State Estimation for Nonlinear Systems. Technical Report IMM-REP-
1998-15, Department of Mathmatical Modeling, Technical University of
Denmark, 28 Lyngby, Denmark, April 2000.

[24] A. Gelb. Applied Optimal Estimation. MIT Press, Cambridge, MA, 1988.

[25] A.H. Mohamed and K.P. Schwarz. Adaptive Kalman Filtering for IN-

S/GPS. Journal of Geodesy, 73(4):193–203, 1999.

[26] F. Ferraris, U. Grimaldi, and M. Parvis. Procedure for Effortless In-Field

Calibration of Three Axis Rate Gyros and Accelerometers. Sensors and
Materials, 7(5):311–330, 1995.

100 References

[27] D. Titterton and J. Weston. Strapdown Inertial Navigation Technology.
The Institution of Engineering and Technology, 2004.

[28] H. Hou. Modeling Inertial Sensors Errors Using Allan Variance. Technical
Report 20201, Department of Geomatics Engineering, The University of
Calgary, Alberta, Canada, 2004.

[29] National Geophysical Data Center. Online Magnetic Field Calculator.
http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp.

[30] J.P. Martens. Signal Processing. Lecture Notes, 2004.

[31] S. Butterworth. On the Theory of Filter Amplifiers. Wireless Engineer,
7:536–541, 1930.

[32] A.B. Williams and F.J. Taylors. Electronic Filter Design Handbook.
McGraw-Hill, New York, 1988.

[33] Mathworks. Signal Processing Toolbox. http://www.mathworks.com/
products/signal/.

http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp
http://www.mathworks.com/products/signal/
http://www.mathworks.com/products/signal/

3
System Design

The actual system design is presented in this chapter. It consists of sev-
eral aspects ranging from the hardware design with the choice of components,
schematics design and layout of the circuit to the development of embedded
software to have all of the subsystems function individually and allow com-
munication between them.

3.1 Introduction

Before the system design is fully explained, the requirements for these systems
are outlined and an overview is given of the systems that have been designed
throughout the years.

3.1.1 System Requirements

First of all, the system should naturally be able to supply the necessary
data to perform the task at hand. Given the filter design of the previous
chapter, this implies that at least three dimensional acceleration and magnetic
field measurements should be present. Additionally, this data can also be
complemented with gyroscope readings. Aside from the sensors themselves,
additional devices should be present to transfer all of the information to a
processing unit, in this case a Personal Computer (PC), where the data may
be processed to an orientation and where the result can be visualised.

102 System Design

Second, an inertial motion tracking system must also fulfill a range of
requirements that are normally associated to mobile systems. It should be as
unobtrusive as possible. It should be light in order for the user to be able to
carry it around and it should be small so that it doesn’t hamper the user in
his movements. Generally speaking, it should be invisible to the user such
that it has no influence on his or her behaviour.

Finally, the system should be portable. This implies that wireless technol-
ogy should be used to transfer measured data and that the system will need
to be powered by batteries. From the second requirement immediately follows
that, given the limited power capacity, the system should consume as little
power as possible. This will be reflected in both the choice of components and
the implementation of the functionality in firmware.

3.1.2 Available Systems Overview

Over the past few years, several generations of motion tracking systems have
been developed. Initially, an existing system was already present as the result
of the master thesis of ir. Niels Decraene [1]. Within the scope of the thesis,
several types of sensor nodes were designed containing a variety of sensor
types and brands [2–5]. This system was the first step of CMST into the world
of inertial sensing and thus mainly consisted of test boards. As the goal of
the thesis was to explore the possibilities of accelerometers and perhaps other
sensors, none of the boards were specifically designed for actual orientation
tracking. This is clearly reflected in the fact that none of them contain a means
for measuring the earth’s magnetic field in three dimensions, which is a crucial
part of the tracking process.

The initial system however, has set the basis for future generations of
systems. Wireless communication was implemented successfully on some of
the system’s nodes, although the transfer rate still needed improvement. The
world’s first two dimensional integrated gyroscope [4] was used together with
a more conventional, uniaxial sensor [3] to form a flat board that could measure
angular rate in three dimensions. Previously, several boards had to be inter-
connected and placed perpendicular to each other to obtain this. Throughout
the years, a fully integrated, three dimensional gyroscope [6] became avail-
able, making the design even more compact. Finally, the system build-up
consisting of a microcontroller [7] interconnected with several sensors and a
wireless transceiver chip [8] has been reused in newer designs.

After one year, a new system became available designed by two master
students in the scope of their master thesis [9]. It consisted of several MARG
sensor nodes capable of transmitting their data at a rate of 100 Hz to a central
receiver via a wireless interface. The system had grown over several prototypes
of smaller nodes in fewer amounts until the final version. This system was used

Hardware 103

extensively for several tests and helped develop the tracking filter to what it
is today. The system has also determined the final network layout where
multiple nodes send data to a base station in a turn-based approach [10].

Finally, a fully optimised system has been designed combining all of the
best aspects of the preceding versions. The system exists in both an MFG ver-
sion as well as a MARG version. The microcontroller and wireless transceiver
have been retained from the initial design, while the sensors and some of the
network aspects have been copied from the second generation. Extra features
were then added to make the system outperform its predecessors. A plug-n-
play wireless ad hoc network was coded into the firmware supporting a large
number of sensor nodes to function simultaneously. One of the tracking fil-
ters was also implemented in firmware, relieving the backend computer from
this task. Fully flat, single board MARG nodes were conceived using three
fully integrated three dimensional sensors. And all of this was realised while
minimising the power consumption.

Aside from the developments on rigid boards, other technologies were also
explored. A flexible version of the MFG nodes was designed and produced at
CMST. Careful and creative routing allowed to interconnect all of the com-
ponents within a single conductive layer. Finally the first steps have been
taken towards the development of nodes with the CMST patented Ultra Thin
Chip Package (UTCP) technology [11] where chips are embedded within the
flexible substrate. This way, the whole node becomes even more unobtrusive
and, combined with flexible batteries, a fully flexible node can be made.

3.2 Hardware

An overview of the available hardware platforms used to obtain the results
of this work is given in this section. First, a general overview of the system
is given. Then several generations of designs as they have been outlined in
the introduction are described. An overview is given of each of the subsys-
tems present in that generation and all of the components used to create the
hardware.

The first generation designed by Niels Decraene [1] will not be described
here as none of the designed nodes contained all of the necessary sensors to
perform true driftless three dimensional orientation tracking. The key features
of these designs have already been mentioned in the introduction.

3.2.1 General System Layout

The system consists of two major parts: the sensor nodes and the base station.
Multiple sensor nodes are needed to track an entire human person as each
limb should be equipped with a node. Generally, the human body can be

104 System Design

approximated by a rigid body with 15 interconnected links [12]. Although a
single base station should suffice, multiple base stations could improve the
system performance by decreasing the data loss.

3.2.1.1 Sensor Node Build-up

Sensor nodes need to be attached to the tracking subject. Logically this calls
for a subsystem that is very light, small and comfortable, but also wireless
and low power. In general, the circuit of a sensor node should consist of three
major parts: a microcontroller, sensors and a wireless transceiver. The block
diagram displayed in figure 3.1 shows the general layout of the sensor node
subsystem.

Microcontroller

Accelerometer

Gyroscope

Magnetometer

RF Transceiver

Watch
Crystal

LED

Voltage
Regulator

- +

Figure 3.1: Block diagram of the standard sensor node build-up.

The microcontroller forms the heart of the node, controls all of the events
and manages the signals. The sensors are connected through a shared digital
interface for communication or via the Analogue to Digital Convertor (ADC)
pins of the microcontroller in case it concerns an analogue sensor. The Radio
Frequency (RF) transceiver is connected via another digital interface. Power
is supplied from a battery and converted to a steady voltage by a Low Dropout
(LDO) voltage converter. A LED is added for visual feedback of the node’s

Hardware 105

functionality and a low frequency watch crystal allows accurate timing of the
actions taken by the system.

3.2.1.2 Base Station Build-up

The base station is designed for data throughput and should be optimised to
perform this task as quickly as possible. Consequently, the build-up consists
of a receiving interface, in this case the wireless transceiver, and a transmitting
interface connected to a computer. This transmitting interface can be either
of the available standard computer interfaces e.g. Universal Serial Bus (USB)
[13] or Ethernet [14] or even a wireless interface as e.g. Wi-Fi [15] or Bluetooth
[16]. The block diagram of this type of circuit is displayed in figure 3.2.

Microcontroller

RF Transceiver

Computer

USBEthernetWifi Bluetooth

Figure 3.2: Block diagram of the standard base station build-up.

Aside from the interfaces, the power circuit should also be considered.
Several sources should be supported, but, if present, power can also be taken
from the computer via the USB interface as this does not require any additional
battery or power source.

3.2.2 Second Generation

The second generation tracking system has been designed by ir. Wouter Ver-
stichel and ir. Bart Kuyken in the frame of their master thesis [9]. This system
consisted of several sensor nodes that are able to transmit measurement data
to a base station via wireless communication.

106 System Design

3.2.2.1 Sensor Node

The sensor nodes of this generation consist of several boards that must be
interconnected in order to obtain a fully functional subsystem. As can be seen
in figure 3.3, three boards are needed, the main board, the wireless board and
the gyroscope board. The wireless board was designed in such a way that it
could also be replaced by a commercially available, more powerful version [17].
The outside dimensions and weights of the boards are listed in table 3.1, the
last line gives the overall dimensions when all boards have been connected
together.

Wireless Board

Gyroscope Board

Main Board

Figure 3.3: Picture of the individual boards of the second generation sensor node.

Length [mm] Width [mm] Thickness [mm] Weight [g]
Main Board 42 30 5 8.1

Wireless Board 26 22 11 3.1
Gyroscope Board 14 11 3 0.8
Assembled Node 55 30 14 12

Table 3.1: Second generation sensor node boards dimensions and weights.

A fully assembled sensor node with all boards connected together and a
battery [18] attached to the bottom is displayed in figure 3.4. The battery
weighs 18.9 g and measures 60 by 34 by 3.8 mm and has been attached to
the backside of the main board using Velcro.

Accelerometer

The fully integrated LIS3LV02DQ accelerometer from ST Microelectronics was
used [19]. This sensor offers acceleration measurements in three dimensions
and allows internal conversion to a digital signal that can be obtained through
either an Inter-Integrated Circuit (I2C) bus or a Serial Peripheral Interface

Hardware 107

Figure 3.4: Picture of an assembled second generation sensor node.

(SPI). Furthermore, it features a programmable range of ±2 or ±6 g and an
output data rate ranging from 40 Hz to 2.5 kHz. Especially the lower range
is of intrest, since only gravity is supposed to be measured. When configured
this way, the device has a resolution of about 1 mg and a non linearity error
that is limited to 60 mg. This translates in possible orientation errors below
3◦ and a resolution of 0.05◦.

Gyroscopes

Two gyroscopes were needed in order to obtain fully three dimensional angular
rate information as three dimensional integrated gyroscopes did not exist yet.
The world’s first two dimensional gyroscope, the IDG300 from Invensense [4]
with a range of 500 ◦/s, is used twice on each node. One gyro is placed
on the main board and measures the tilt rates and another one is placed
on the vertical gyroscope board to measure the yaw rate. The reason that
no yaw rate gyroscope is placed on the main board to complement the two
dimensional gyro is that no single axis gyroscope was found that functioned
with a 3 V supply. Otherwise, a second 5 V supply had to be added to feed
this component.

Magnetometer

The magnetometer used is the YAS529 from Yamaha [20]. This device is the
smallest 3D integrated magnetometer available at the moment, measuring
only 2 x 2 x 1 mm. It is equipped with an I2C compatible digital interface and
has a built-in temperature sensor and initialization coils. The geomagnetic
sensor also features an automatic power down control which keeps the sensor
in a stand-by state once a measurement is completed. This component is

108 System Design

very suited for the application at hand not only for its very compact size and
restricted current consumption, but also due to its high sensitivity which makes
the sensor sensitive to earth’s magnetic field.

Microcontroller

The ATmega168 [21] from Atmel’s AVR family of 8 bit low power microcon-
trollers is used. It features a Reduced Instruction Set Computer (RISC) ar-
chitecture with many programmable peripherals ranging from counters and
analog comparators to digital interfaces and ADCs. The low power aspect
is reflected in the 0.1 µA current consumption in stand-by mode and 250 µA
in active mode when fed by a 1.8 V supply and operating at a 1 MHz clock
frequency.

RF Transceiver

The RF communication is provided by the Cypress CYRF6936 [22] single chip
transceiver operating in the unlicensed 2.4 GHz Industrial, Scientific and Med-
ical (ISM) frequency band. The chip takes care of all signal modulation and
demodulation and communicates to the outside world via an SPI. With a Trans-
mit (TX) and Receive (RX) current consumption of respectively 34.1 mA and
21.2 mA, the RF part of the chip takes up the biggest part of the power con-
sumption. Therefore, low power modes exist where only the digital interface
is active leading which leads to a consumption of only 1 mA. This way, data
can be clocked in or out of the chip while the frontend is switched off.

3.2.2.2 Base Station

The data from the sensor nodes needs to be received by a base station that
is connected to a computer in order to allow processing of the data and visu-
alisation of the result on the screen. Several options exist to transfer data to
a computer as multiple interfaces are readily available. The base station in
the second generation allows communication via either USB or Ethernet. A
picture of a fully assembled base station is displayed in figure 3.5, it utilises
the same platform of microcontroller and RF transceiver as the sensor nodes.
The board measures 85 mm in length, 29 mm in width and is 26 mm thick.

USB

The USB interface consists of a Universal Asynchronous Receiver/Transmitter
(UART) to USB converter chip, the CP2102 from Silicon Laboratories [23]. A
microcontroller can send data serially to this chip, which will then convert it
in valid USB signals. The inverse data direction is of course also available.

Hardware 109

Figure 3.5: Picture of an assembled second generation base station.

At the computer side, a driver is installed that mounts a virtual serial port
from which data can be read.

A major advantage of the USB interface is the fact that power can be
drawn from the computer, which can be used to feed the entire base station
circuit as the bridge chip also incorporates a regulator. This avoids the need
for an external battery or power source.

Ethernet

The ENC28J60 from Microchip [24] provides the base station of an Ethernet
controller. This stand-alone device is equipped with an SPI through which
the device can be set up and data can be transferred or received. The Media
Access Control (MAC) and physical layer are implemented on the chip, other
layers as e.g. transport or network, need to be implemented in the microcon-
troller.

The Ethernet interface has several advantages over USB. First, any com-
puter can be added to the network containing the base station and can start
receiving and visualising the sensor data. With a USB connection, an extra
base station is needed. Second, multiple networked base stations can easily
be placed at various locations in order to obtain lower data loss. Wireless
communication is prone to changes in the environment which can be very local,
placing multiple base stations might counter the effects of these changes. At
the computer side, all packages need to be combined and duplicates have to
be removed. Finally, this type of interface does not require any drivers to be
installed since the network interface is expected to be present and active in
a modern day computer.

110 System Design

3.2.3 Third Generation

In the third generation, two types of sensor nodes were created, one with
and one without a gyroscope. The multiple interconnected board structure
from the second generation was abandoned as the connectors proved to be a
major source of problems and random stalling. Given the fact that a different
RF transceiver was chosen to offer a bigger range with an available antenna
design, the base station also needed to be redesigned.

3.2.3.1 MFG Node

A picture of a fully assembled MFG sensor node is displayed in figure 3.6.
The same magnetometer from the second generation nodes is used and the
accelerometer is the LIS302DL from ST Microelectronics [25], a component
with similar performance to the one selected for the second generation. The
outside dimensions are a length of 55 mm, a width of 24 mm and a thickness
of 7 mm. The board including all components weighs 6 g.

Figure 3.6: Picture of an assembled third generation MFG sensor node.

Microcontroller

The MSP430f249 [26] from Texas Instruments’ ultra low power microcontroller
family is used. This family of controllers incorporate a 16-bit RISC Central
Processing Unit (CPU) in a von Neumann architecture [27]. Several periph-
erals such as digital interfaces (UART, SPI, etc.), ADCs, Digital to Analogue
Convertors (DACs), timers and Hardware Multipliers (HWMs) can be present
depending on the family member. Ultra low power functionality is obtained
through the availability of numerous low power modes where parts of the
system can be temporarily disabled and many interrupt sources are possible.
The current consumption of this component is very comparable to the AVR,

Hardware 111

the biggest difference however is found in the 16-bit functionality that is key
to the embedded implementation of the orientation tracking algorithm.

RF Transceiver

The RF transceiver used in this design is the Nordic Semiconductor nRF2401
[8]. The functionality of this device is comparable to that of the Cypress chip
used in the second generation. It is a single chip RF solution with a power
saving function called Shockburst, where data is first acquired via the SPI
in sleep mode before being transmitted in a fast active burst. The biggest
difference however, lies in the DuoCeiver functionality. In this mode, the RF
transceiver is able to receive data in two separate channels simultaneously
through a single antenna at maximum data rate. These channels must be
spaced exactly 8 MHz apart to benefit from this functionality and received
data is available through separate digital interfaces on the chip. The actual
current consumption of this device is also significantly lower with 13 mA and
23 mA being consumed during respectively TX and RX operation and as low
as 12 µA during stand-by.

3.2.3.2 MARG Node

The MARG node is identical to the MFG node aside from the added angular
rate sensor. A picture of an assembled MARG node is displayed in figure 3.7.
The node measures 55 mm in length, is 26 mm wide and has a thickness of
7 mm. It weighs 6.3 g.

Figure 3.7: Picture of an assembled third generation MARG sensor node.

112 System Design

Gyroscope

The ITG3200 from Invensense [6] has been selected as angular rate sensor.
It is the world’s first fully integrated triaxial gyroscope and features 16 bit
ADCs, an I2C interface and a full scale range of ±2000 ◦/s. This higher range
compared to the IDG300 was necessary since saturation was seen when using
the second generation nodes during experiments. Thanks to this brand new
device, the MARG sensor node is very compact and only consists of a single
board.

3.2.3.3 Base Station

The design of the base station was part of the work executed by ir. Bert
Vanhoutte in the frame of his master thesis [28]. It is based on the same
platform as the third generation sensor nodes and thus contains the same mi-
crocontroller and RF transceiver. As was the case with the second generation
receiver, it features a USB interface based on a UART to USB bridge [29]
and an Ethernet connection [24]. Additionally, a Bluetooth interface is also
available. Figure 3.8 shows a picture of a fully assembled base station. The
outer dimensions are a length of 71 mm, a width of 57 mm and a thickness of
15 mm.

Figure 3.8: Picture of an assembled third generation base station.

Hardware 113

Bluetooth

The integration of a Bluetooth interface proved a bigger challenge then ex-
pected. Although single chip solutions do exist, these devices are mostly
optimised for very specific tasks and require input sequences corresponding
to Host Controller Interface (HCI) layer commands. This means that the Blue-
tooth stack also needs to be implemented in the microcontroller, which is
clearly beyond the scope of this work. An alternative is the use of a Bluetooth
module which can be addressed using simple commands via a UART interface.
Eventually the RN41 from Roving Networks [30] was chosen.

The use of a wireless interface also opens up new possibilities for the
network topology. In terms of scalability, it could be interesting to have each
user carry a base station that collects all of the data from the sensor nodes
placed on that person’s body and have these devices function in some sort
of BAN. A second network consisting of all these BANs and one or more
computers could then be formed by dedicating the base stations as access
points. This functionality has however not been fully investigated as it turns
out that the Bluetooth module used in the design is fairly limited in capabilities
since the data rate did not meet up to the expectations.

3.2.4 Fourth Generation

In the fourth generation, the focus has turned to the production technology
used for the sensor nodes. In a first step, the design was transferred to an in
house flexible board technology with a single conductive layer. Afterwards,
the CMST patented UTCP technology is used to make even the Integrated
Circuits (ICs) flexible.

3.2.4.1 Flexible Board

Only an MFG type sensor node has been designed for realisation with flexible
technology.

Process

The process flow of the CMST flexible board technology is displayed in figure
3.9. It is based on a 50 µm thick polyimide substrate with a single 18 µm
thick layer of copper on top (a). Patterning of the copper is done by standard
lithography steps: resist layer deposition through spin coating (b), exposure to
Ultraviolet (UV) light through a pattern mask (c), removal of unexposed resist
(d), etching of the copper parts that are no longer protected by resist (e) and
stripping of the remaining resist (f). Afterwards, a 20 µm thick solder mask
is applied (g) and a Nickel Gold finish is plated on the parts of the copper

114 System Design

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.9: Process flow of the flexible board technology.

that are still open to avoid corrosion and improve soldering (h). Finally,
components can be soldered on the surface using a standard reflow process.
Note that during all of these steps, the substrate is glued to a temporary rigid
carrier in order to ease handling and avoid curling of the substrate.

Hardware 115

MFG Node

A top view of a fully assembled flexible MFG sensor node is displayed in figure
3.10. The node contains the same sensors and RF transceiver as the third
generation MFG node, but a different microcontroller, the MSP430f2132 [31]
is chosen. The reason lies in the smaller package of this component. The wires
at the top of the picture allow connection to a battery and also programming
of the microcontroller firmware. Figure 3.11 shows a side view of the flexible
node. The low thickness of the flexible substrate board is clearly visible.

Figure 3.10: Picture of an assembled fourth generation flexible MFG sensor node.

Figure 3.11: Side view of an assembled fourth generation flexible MFG sensor node.

Due to the availability of only a single conductive layer, careful routing
of the signals had to be performed. Unused pins of the microcontroller pro-
vided handy shortcuts to route otherwise blocked signals. Despite all creative
routing however, zero Ohm resistors had to be used to bridge one signal over
another. Note however that the nodes in the pictures still have three of these
bridges, while future versions can be made with only one.

3.2.4.2 UTCP

The UTCP technology has been developed by dr. ir. Wim Christiaens in the
scope of his PhD research [32]. The process of the technology includes the

116 System Design

thinning of individual chips down to approximately 15 µm and the embedding
of these chips in flexible substrates. The total thickness of the package is
lower then 50 µm and thanks to the very low thickness of the chip, the entire
structure is even bendable. Currently, the production technology and process
flow are being refined and steps are made towards stacking of thinned dies.

Process

The UTCP process consists mainly of two parts: chip thinning and embedding.
The chip thinning technology is optimized on a PM5 Precision Lapping

and Polishing Machine [33] and is a combination of a lapping and a polishing
process. The first stage is a lapping process which has a much higher material
removal rate and produces a non reflective matt surface. The second stage is
the polishing process where surface damage usually created during lapping is
removed and a reflective surface is obtained. The surface roughness produced
in the lapping stage depends on the abrasive particle size and the hardness
of the material. In the polishing stage, the final roughness only depends on
the polishing method. Details and optimization for the different process steps
are available in [32].

The process flow of the embedding part is displayed in figure 3.12. The
base substrate consists of a polyimide layer as was the case for the flexible
technology but without the copper layer (a). A layer of photo definable poly-
imide is spun on top of the first layer (b). Then, a cavity is made in this second
layer using photo lithography (c) and a drop of Benzocyclobutene (BCB) is
dispensed inside the cavity to serve as adhesive material (d). Afterwards, the
thinned chip may be placed, face up, inside the cavity and, together with the
BCB, the cavity is now entirely filled (e). The whole stack is now covered with
a second layer of photo definable polyimide to obtain a flat substrate (f). Next,
via’s are defined in the top polyimide layer via a second photo lithography
step in order to make the contacts of the chip accessible (g). Finally, the via’s
are metallised and a third lithography step allows the metal to be patterned
(h). Note that, as with the flexible technology, a rigid carrier substrate is used
the entire process.

Nodes

Although no actual sensor nodes using the UTCP technology have been fab-
ricated, some initial designs have been made for first tests and future pro-
duction. Since a lot of effort has been made for packaging microcontrollers
and RF transceivers as UTCPs, these are the devices that will be embedded.
In the presented designs, the chips are embedded in a flexible board as de-
scribed by the UTCP process and these packages are then mounted on top
of the base circuit flexible board which contains the other components and

Hardware 117

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.12: Process flow of the UTCP technology embedding part.

118 System Design

the circuit routing. In a later stage, all UTCP components can be embedded
inside the base circuit board and conventional components can be mounted on
top of the embedded devices. This way, an even more compact result can be
obtained by exploiting all available space.

The UTCP sensor node designs represent an MFG type sensor node con-
taining the exact same components as the third generation MFG nodes. The
only difference is that a newer version of the RF transceiver is used, the
nRF24L01 [34], which is entirely backwards compatible with its predecessor.

The first design consists of a base circuit board that resembles the flexible
sensor node design and two separate flexible boards containing the UTCP
devices. Both the UTCP boards are displayed in figure 3.13. The metal
layer is used to form a taper from the chip contact pads towards a footprint
compatible to the actual packaged devices.

(a) MSP430F249 UTCP design (b) nRF24L01 UTCP design

Figure 3.13: Flexible boards for UTCP devices.

The base board design is shown in figure 3.14 and accommodates space for
all of the components in the circuit, including both of the UTCP boards. Note
that due to the fact that the thinned chips are placed face up in the cavity
and thus face down on the base board, the footprints are actually mirrored
compared to the normal packaged devices.

In the second design, both thin chips are supposed to be packaged in
the same flexible board forming a combined UTCP. The challenge is found
in the need for accurate placing of both components, as the interconnections
between both are now realised by the metal layer of the UTCP technology.
Figure 3.15 shows the design of the combined UTCP. Note that not all of the

Network Protocol 119

Figure 3.14: Fourth generation base circuit flexible board design for separate UTCP
devices.

Figure 3.15: Flexible board combining both UTCP devices.

contact pads are actually interconnected as these are also not needed for the
correct functionality of the sensor node.

Figure 3.16 displays the base circuit flexible board design compatible with
the combined UTCP design from figure 3.15.

3.3 Network Protocol

The sensor nodes of the inertial tracking system will need to transmit the
captured sensor data to a base station connected to a computer for further

120 System Design

Figure 3.16: Fourth generation base circuit flexible board design for combined UTCP
devices.

processing. As in every communication system, a certain protocol should de-
termine when each node is allowed to transmit information and what informa-
tion should be transferred in which order. Otherwise, the result is total chaos
where nodes disturb each other’s communication with the base station and
none of the received information can be processed.

In this section, a wireless ad hoc network protocol is presented that allows
simultaneous operation of many inertial sensor nodes. First the requirements
for the protocol are discussed and some conclusions are drawn about the
features that the protocol should support. Then, a framework is chosen for the
protocol determining general functionality and applied principles. Afterwards,
the protocol itself is introduced step by step, starting with the two possible
roles nodes can take on: master or slave. Dynamic functionality where nodes
can change their behaviour is introduced next, followed by the description of
additional control mechanisms that increase robustness. The description is
concluded by the base station functionality and some possible measures to
increase the supported node count. Finally, the current consumption of the
nodes is analysed during events coupled to the protocol and the performance
is rounded up.

Note that the protocol was first designed for the third generation MFG
type nodes. Hence the entire protocol description is based on this tracking
system. At the end of the section, the adjustments are discussed that allowed
the implementation of the same protocol on the second generation sensor
system and on the third generation MARG type nodes.

Network Protocol 121

3.3.1 Protocol Requirements

Inertial motion tracking of persons requires several sensor nodes to be attached
to the body [35]. Each of these nodes will need to deliver sensor data at a
regular rate to allow full human body posture tracking. Visualisation and
further processing of the data is carried out by a computer which will obtain
the information from a base station. As all of the nodes are clustered onto the
body, the distance from each of the nodes to the base station is approximately
equal no matter the posture of the traced person. When the person moves out
of the reach of the base station, all nodes will loose the ability to communicate
almost simultaneously.

In order to provide full body motion tracking, a human body model is
adopted using 15 interconnected segments [12]. This implies that at least
15 nodes should be able to function simultaneously. Furthermore, a sample
frequency of 100 Hz is chosen to allow smooth and accurate tracking. All of
the nodes must consequently transmit their data within a 10 ms timeframe.

When motion capturing is performed in realtime, delay is considered as an
important aspect and should always be minimised. Therefore, latency within
the network should be close to zero. Combining this with a relatively high
sampling rate where data will quickly become outdated, leads to the conclusion
that retransmission of lost data will not be needed as new data will already
be available when a retransmit is requested. This way, nodes can concentrate
on the present data and no acknowledgments or retransmission requests need
to be transmitted by the base station. The result is that the base station will
purely function as a receiver, no data is transmitted from the base station.

The mainly fast data driven nature of the network shows the need for a
robust network protocol. Malfunctioning nodes should not result in a col-
lapsing network or hinder other nodes in their communication with the base
station. Whenever a node is activated, data transmission should start as soon
as possible and nodes should adapt to the state of the network to insure data
integrity. Moreover, nodes should be able to determine their place in the
network and detect problematic situations based on own observations. The
use of metadata should be avoided due to the fact that this approach requires
additional information to be transmitted by the nodes or even the base station,
which in turn implies that less time is available and more power is consumed.

The above statements clearly imply that the network will adopt a star
topology where data is only transmitted directly from the nodes to the base
station. Although shielding by the human body can lead to unexpected packet
loss in non LoS situations, multi-hop communication will not provide any ben-
efit due to the fact that new data is generated regularly. If data is to travel
via a multi-hop path, chances are that new data has already reached the
base station making this older data obsolete. Furthermore, since no diagnos-

122 System Design

tic metadata will be used, nodes can never determine if their data actually
reaches the base station. A better approach to avoid unexpected package loss
due to shielding consists of placing additional base stations on either side of
the tracked subject.

3.3.2 Protocol Framework

Wireless communication will contribute most to the total power consumption
of the sensor nodes. The presented protocol allows each of the components in
the circuit to remain in sleep mode as long as possible, maximizing the battery
life. Care has been taken to implement the protocol using an interrupt driven
approach.

The custom designed wireless protocol is based upon the principle of Time
Division Multiple Access (TDMA), where data transmissions are separated in
time to avoid collision [36]. Nodes are assigned a certain timeslot in which
they are allowed to transmit freely without interrupting the data transmission
of any other node. Each timeslot is assigned a number in the temporal order
in which they appear. The length of the timeslots is chosen in such a way
that it allows a node to transmit the data and the base station to process it.
Furthermore, a small amount of time is added to avoid overlap due to slight
clock differences originating from the tolerance on the watch crystal frequency.
Given the 20 ppm accuracy of the crystals and the 10 ms timeframe length, the
worst case drift per frame amounts to 0.4 µs.

Using a time driven approach however, requires the presence of some sort
of time reference. To this extend, a hierarchy is introduced involving a master
and several slaves. The master node will provide all of the slaves with a
synchronising point to which they are able to time their transmission. It is
important to note that the master and slaves all consist of exactly the same
hardware and that the difference is only noticeable in software.

In order to be able to identify a certain node in the network, each of
the nodes is assigned a unique Identification (ID) number. This ID is also
programmed within a separate part of the flash memory of the microcontroller,
allowing the node to be reprogrammed without changing this fixed sensor node
ID. It is also visible on the pictures of the sensor nodes shown in figures 3.4,
3.6 and 3.7 from section 3.2 as a label with this ID is applied to each node.

The data package transmitted by each of the MFG nodes consists of 11
bytes as can be seen in figure 3.17. The first byte depends on the current
function of the node in the network, if it is the master, the byte is a package
counter, if it is a slave, the byte instead equals the number of the timeslot
that is used by the node. The second byte is the ID that has been assigned to
the node. Then three bytes follow with respectively X, Y and Z accelerometer
output data in 2’s complement form [37]. The final six bytes contain the output

Network Protocol 123

of the magnetometer as three fixed point digital sequences of two bytes. More
information on the sensor output data formats is given in section 3.4.

Master: Packet Counter
Slave: Timeslot Number

Node
ID

Accelerometer
Data

Magnetometer
Data

1 Byte 1 Byte 3 Bytes 6 Bytes

Figure 3.17: Contents of the RF data package. The master sends a packet counter,
while slaves send their timeslot number.

The base station combines all of the received RF data packages from the
sensor nodes in a single large package for transmission to the computer. The
structure of this package is displayed in figure 3.18. In total, ten bytes per
active node and two additional counter bytes are transmitted. Each node
adds an ID byte, three accelerometer output bytes and six bytes correspond-
ing to the magnetometer output. The package is concluded with the counter
byte found in the master package and an additional overflow counter that is
maintained on the base station.

Master ID +
Sensor Data

10 Bytes

Slave 1 ID +
Sensor Data

10 Bytes

Master and
BS Counter

Slave x ID +
Sensor Data

...

10 Bytes 2 Bytes

Figure 3.18: Contents of the base station data package.

3.3.3 Master Operation

The implementation of the master sensor node operation is fairly straight-
forward. A flowchart illustrating its functionality is given in figure 3.19.

At startup, an initialisation phase sets up each of the components in the
circuit and prepares them for the first acquisition and transmission of data.
The output data rate of the accelerometer is set to 100 Hz and its range to 2 g
as it is expected to measure only gravity. The magnetometer’s initialisation
coils are activated in order to avoid saturation of the sensing device, the
factory calibration is acquired and an offset measurement is completed to set
the range of the sensor. The RF channel is set in the transceiver, functionality
is set to Shockburst at 250 kbps and all of the registers are configured to
use two address bytes and a single byte Cyclic Redundancy Check (CRC) for
packet filtering. For the microcontroller, interfaces are configured to match

124 System Design

Initialisation

Reset Timer

Send Data

Perform
Measurement

Wait in Low
Power Mode

Until
Timer = 10 ms

Figure 3.19: Flowchart of the master sensor node operation.

the peripheral devices and unused parts are disabled. Furthermore, one of
the internal timers is set to a 10 ms period and programmed to generate a
time-out interrupt on each completed cycle. It is driven by a clock signal that
is generated by the external watch crystal present on the sensor node board
and thus provides a stable reference.

Afterwards, the master starts an infinite program loop where, in each iter-
ation, data is collected from the sensors and transmitted to the base station
via the wireless interface. When both steps are completed, the sensor node is
put in sleep mode, conserving as much power as possible. The only component
that is kept active during the sleep period is the accelerometer due to its long
turn-on time of 30 ms. Given the timer setup, the node will wake up at a rate
of 100 Hz to repeat the cycle.

3.3.4 Slave Operation

The slave sensor node operation is more complex because in this case the
transmission of data must be synchronised with the master. Figure 3.20 depicts
a flowchart representing the slave node implementation.

The initialisation procedure mostly sets up the components as the mas-
ter node does, yet there is one important difference. Two different time-out
interrupts are associated with the 10 ms timer driven by the watch crystal.
One which corresponds to the timeslot that has been assigned to the slave
and another is set to approximately 9 ms. This second interrupt will allow the
slave to wake-up on time for packet reception from the master.

Network Protocol 125

Initialisation Reset Timer

Send Data

Perform
Measurement

Wait in Low
Power Mode

Until
Timer = 10 ms

Wait in Low
Power Mode for
RX Master Data

Change RF to TX
on Slave Channel

Wait in Low Power
Mode for Timeslot

Change RF to RX
on Master Channel

N = 256 ?

N++
YES NO

N
=

0

Figure 3.20: Flowchart of a slave sensor node operation.

After initialisation, the RF transceiver is configured for reception of a
packet from the master. In order to allow easy detection if a package origi-
nates from a slave or from the master, slaves utilise a different RF channel for
data transmission. This way, slaves can simply listen on the master channel
and synchronise to any packet reception without having to unpack or even
read out the received package. Once a packet is detected, the RF transceiver
operation is switched to transmit mode and its frequency is set to the slave
RF channel. Also, the timer is forced to reset to complete the synchronisa-
tion process. The slave is then put in sleep mode only to be awoken by the
timer interrupt when its timeslot is reached. At this point, data is transmitted
wirelessly to the base station and new data is acquired from the sensors.

The above procedure could easily be repeated in an infinite loop to obtain
a working TDMA-like master slave protocol. However, this approach would
incur two important drawbacks. Firstly, a slave would have to activate the
frontend of its transceiver twice every cycle: once to receive a synchronising
package from the master and a second time to transmit its own data. Since the
RF transceiver is clearly the biggest contributor to the power consumption of
a sensor node, this would result in slaves that consume approximately twice
as much as the master. Secondly, whenever a slave would miss a package
from the master due to e.g. environmental effects, it would also not transmit
a package of its own. This would in turn result in a higher packet loss for
slaves.

The suggested approach, which is also illustrated in figure 3.20, involves
reducing the number of times a slave will synchronise with the master to only

126 System Design

once every 256 transmitted packages. When no synchronisation is performed,
the node will rely on the internal timer driven by the local watch crystal
to provide the interrupts at the appropriate time. A result of this approach is
that power consumption in slave nodes will drastically be reduced and that the
transmission of 256 subsequent packages is guaranteed with each successful
synchronisation. Note however, that the worst case clock drift increases to
0.1024 ms since it must also be multiplied by the same amount.

3.3.5 Dynamic Implementation

The protocol as it has been proposed so far still suffers from one major flaw.
It depends fully on the existence and the correct functionality of the master
node. Once this node malfunctions or its battery runs out, the whole net-
work collapses as no more synchronisation is present. In order to avoid this
catastrophic situation, nodes must be able to determine their role in the net-
work at runtime and react to sudden changes when needed. By adding this
functionality, the network attains a plug-and-play nature where nodes can
be switched on or off at the user’s discretion. A flowchart illustrating this
dynamic implementation is displayed in figure 3.21.

N = Packet Counter

Listen for Available
Slave Timeslot

Send 256 - N
Packages

Listen for
Master

RX Interrupt

RX
Interrupt

Initialisation

Unique Startup
Delay

Listen for
Master

Master Operation

Time-out
Interrupt

Time-out
Interrupt

Figure 3.21: Flowchart of a dynamic node operation.

An important part of the startup phase is the unique startup delay. This
delay ensures good functionality of the protocol when multiple nodes are
powered on at the same time. This situation can easily arise if these nodes

Network Protocol 127

share the same power supply. In the initialisation phase, a timer is configured
to deliver a time-out after approximately 90 ms. This fixed delay will then
be repeated a number of times equal to the sensor node’s ID. The individual
timespan is chosen such that a node can complete the required steps up until
the transmission of its first package as a master. This way, when multiple
nodes are powered at the same time, only the node with the lowest assigned
ID will become master.

After the initial delay, a node will figure out if a master is present in the
network. To accomplish this, the RF transceiver must be set to receive data
in the master’s RF frequency channel. At the same time, a timer is started,
programmed to trigger a time-out interrupt after 60 ms. This means that, if
a master is present, the node can receive a total of six RF packages before
the timer generates the time-out interrupt. If indeed a package is received,
this will trigger a different interrupt indicating that the node should become
a slave. Otherwise, the time-out interrupt will eventually occur and the node
will start acting as the master within the network. In this case it will operate
according to the flowchart depicted in figure 3.19.

If the node has detected a master within the network, it should now deter-
mine which timeslot it will use for wireless communication. It switches the RF
transceiver to receive mode in the slave channel and sets a timer to trigger
an interrupt after 60 ms. Until this time-out occurs, the slave will now process
every received package to determine which timeslots are already in use. This
can be accomplished given the fact that the timeslot number is also included in
the data package as can be seen in figure 3.17. When the time-out finally oc-
curs, the node will choose the lowest available timeslot and start transmitting
data of its own according to the scheme displayed in figure 3.20.

There is however one major change in the behaviour of a slave in the
dynamic implementation. Whenever a slave needs to synchronise with the
master, it starts a timer which will generate a time-out interrupt. This time-
out period however, depends on the timeslot that the slave is using according
to the following formula:

Period [ms] = 40 ms + T imeslot ∗ 20 ms. (3.1)

If the master is still alive, the slaves will be awoken by an interrupt gen-
erated by the RF transceiver chip, meaning that they can continue their op-
eration as a slave within the assigned timeslot. However, if the master has
encountered a problem, the slave node with the lowest timeslot number will
receive a time-out interrupt before all the other slaves will. This slave must
then reconfigure itself as the new master and start operating according to the
flowchart depicted in figure 3.19. The other slaves will receive a package from
this new master node and continue transmitting packages in their timeslot as

128 System Design

if no changes have occurred in the network. Due to the fact that the time-
out period increases with increasing timeslot number, only the slave with the
lowest timeslot number will eventually take over the master role.

As in the startup procedure, the slave using the first timeslot will only
decide to become a master if at least six subsequent packages from the master
are lost. Each of the following nodes will require two additional dropped
packages compared to the preceding node. If a slave becomes master, the
subsequent slave must receive at least one of the first two packets sent out by
the new master, otherwise, this slave will also decide to take up the master
role. A solution to this situation will be discussed in section 3.3.6.

The system that has been described in the above is only able to work if one
important condition is met: all of the slaves must synchronise with the master
at the same time. If this is not the case, time shifts between synchronisations
could easily result in multiple masters. To avoid this issue, synchronisation
will be executed according to a packet counter. As can be seen in figure 3.17,
the master transmits a single byte package counter. This modulo 256 counter
is unpacked by the slaves and locally stored with each synchronisation. Each
time an RF packet is transmitted by a slave, the local counter is incremented
and whenever it resets to zero, the slave will synchronise with the master. As
all of the slaves keep their counter aligned with the master’s counter, all of
them will perform the synchronisations at the same time.

3.3.6 Additional Control Mechanisms

By introducing dynamic features in the protocol, the system has clearly im-
proved in robustness as the failure of one node no longer means that the
whole network collapses. However, up until this point, no backup mechanisms
are present to correct possible anomalies in the network. As already stated
before, multiple masters could be active at the same time due to unexpected
package loss. Since RF communication is highly susceptible to environmental
conditions, this scenario must be taken into account.

When looking at the master operation depicted in figure 3.19, it is clear
that the master node will blindly transmit data packages to the base station.
This implies that multiple active masters would never notice each other and
that the user would have to intervene by switching off the redundant nodes.

Solving this problem requires the master to scan for other possible active
masters in the surroundings. From time to time, a master will listen in the
master RF channel instead of transmitting a package. If a package is received
before a time-out interrupt is generated after 10 ms, the master will reconfigure
itself as a slave and look for an available timeslot. Otherwise, the master will
continue its normal operation in the following timeframe.

Not only the master suffers from this problem though. Analysing the oper-

Network Protocol 129

ation of the slaves depicted in figure 3.20 more thoroughly shows that slaves
will never notice other slaves transmitting within the same timeslot. A similar
procedure as has been described above is used to avoid this issue.

These conflict checks must however be performed on a random base, avoid-
ing the situation where all conflicting nodes are listening for each other at
the same time. Therefore, each node will randomly choose a period between
5 and 13 s to perform the conflict check. After each check, the period is again
randomised.

Note that nodes will deliberately skip transmission of a package while
performing a conflict check. This of course results in loss of packets at the
base station side, yet, due to the chosen intervals, it is restricted to a maximum
of 0.2 %. Not a large cost considering the highly valued gain in robustness.

3.3.7 Base Station Operation

Figure 3.22 depicts a flowchart representing the base station operation. In
the initialisation step, the base station is prepared for reception and retrans-
mission of data. The RF transceiver is configured for reception of data on the
master channel with a two byte address and a single byte CRC. Each of the
other peripheral interface devices are initialised to retransmit data from the
microcontroller over their supported connection. On the microcontroller, the
digital interfaces are set up to match the abilities of the peripherals and a
timer based on the watch crystal clock is initialised with a 10 ms period and
an interrupt after 8 ms. Afterwards, the base station is put in sleep mode until
data is received from the master node. Upon reception, the timer is reset for
synchronisation, the data is read from the RF chip and stored in an array.
Then, the RF transceiver is reconfigured for reception of data in the slave
channel and an infinite loop starts where the base station waits for data and
reads it out upon reception. At a certain point, the timer interrupt will break
the loop operation and the base station transmits all of the received sensor
data to either of its interfaces connected to the computer. Finally, the RF chip
is again configured to receive data in the master channel and the cycle starts
over again.

Note that the base station operation is independent of the number of slaves
at any point in the network. Failing or out of reach slaves will simply keep
the base station waiting in low power mode during their timeslot.

Although this flow of working does work well, it is particularly vulnerable
to a failing master node. Since the entire cycle of operation depends on
the success of master node data reception, a failing master could jam the
base station. However, since this is carefully monitored by several controlling
mechanisms in the sensor node operation, this problem is very unlikely to
occur. A disadvantage that still remains is the fact that when the master

130 System Design

Read Data

Change RF to RX
on Slave Channel

Change RF to RX
on Master Channel

Wait in Low
Power Mode for
RX Master Data

Read Data

Reset Timer

Initialisation

Wait in Low
Power Mode for
RX Master Data

Transmit Data

Interrupt when timer = 8 ms

Figure 3.22: Flowchart of the base station operation.

packet is not received due to changes in the environment, no slave data will
be received either.

3.3.8 Extending Node Count

The number of nodes that can operate within the network is currently limited
by the available number of timeslots. However, methods are available to
extend the node count by making better use of the available hardware in the
base station or by adding additional hardware.

As mentioned in section 3.2.3.1, the RF transceiver used in the third gen-
eration hardware design features a dual receiver functionality. Activating this
feature when receiving in the slave channel allows for additional slaves trans-
mitting in the second receive channel in the exact same timeslots as the other
slaves. These slaves must also synchronise their transmission to the same
master as the other slaves do, and implement the same functionality as de-
scribed in the previous sections. At startup, nodes will now start by looking
for an active master. If this is the case, they will first scan for an available
timeslot in the lowest RF channel. If all of the timeslots are in use, they will

Network Protocol 131

change to the second RF channel and scan for an available timeslot there.
This method almost doubles the amount of nodes that can be active within the
network.

Another way to allow more nodes into the network is to add extra base
stations. Each base station can be programmed to utilize different RF channels
for communication. By doing so, multiple distinct networks will be created.
Nodes will have to start by scanning the first network for an available spot. If
this is not the case, they can move on to the next network. Adding extra nodes
is now just a matter of providing additional hardware and supplying enough
processing power to use the measured data.

3.3.9 Node Current Consumption

The current consumption of sensor nodes is analysed during several possible
situations: normal master and slave operation, dynamic reconfiguring of a
slave to a master and collision detection. Each of the graphs given in this
section was obtained by measuring the voltage across a small resistor placed
in the feedline of the battery with an oscilloscope.

3.3.9.1 Master Node

Figure 3.23 shows a time graph of the current consumption in the master node
during one frame period. Only a single node acting as the master was active
during measurement. Indicated on the graph are several clearly discernible
regions where the current consumption can be associated to functionality of a
certain component. The large peak with a duration of 0.85 ms and an absolute
maximal value of 21.5 mA corresponds to the RF transceiver sending a pack-
age. Following the peak is a 3 ms period where a steady current consumption
of about 3.75 mA is visible. This plateau is a result of the magnetometer per-
forming a new measurement after being activated by the microcontroller. In
the final part, lasting 6.15 ms and where an approximate current of 0.75 mA
is consumed, all components are kept in low-power mode, except for the ac-
celerometer as its wake-up period is too long for the application at hand.
The resulting time period clearly matches the required frame length of 10 ms
to obtain a 100 Hz sampling rate. In normal operation, the average current
consumption of the master was measured to be below 3 mA. This means that
with the batteries that are currently used [18], a lifetime of approximately 2
weeks can be achieved.

3.3.9.2 Slave Nodes

The current consumption in several slave nodes and one master is displayed as
a time graph in figure 3.24. Five nodes were used simultaneously during this

132 System Design

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Time [ms]

C
ur

re
nt

[m
A

]

Current Consumption of the Master Node

Low-Power Mode

Magnetometer

RF Transceiver

Timeframe period (10 ms)

Figure 3.23: Time graph of the current consumption in the master node during one
timeframe period. The dashed line indicates the average consumption over time.

experiment. The slave indices in the graph’s legend indicate which timeslot is
used for RF transmission. All of the transmission peaks of the different slaves
are clearly separated in time as outlined by the protocol. In the center of the
graph, an additional peak with a value and duration of respectively 28.5 mA
and 0.9 ms is present in each of the slave nodes current consumption. This
peak is aligned to the transmission of a master packet and is due to the slave’s
RF transceiver receiving this packet for synchronisation purposes. As slaves
will only synchronise with the master every 256 packets, this extra receive
peak will only add about 10 µA to the average current consumption of the
slaves in respect to the master’s consumption.

Note that the current consumption in the slaves seems higher on the graphs
due to the fact that the LED present on the board has been switched on.
Slaves will blink this LED a number of times equal to their timeslot number
just after synchronising with the master. Each blink will add about 21 µA to
the average current consumption. Also note that the master will blink the
LED continuously yet slower in order to provide visual feedback of the system
state. This consumes about 170 µA and has already been included in the 3 mA
average current consumption.

Network Protocol 133

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Time [ms]

C
ur

re
nt

[m
A

]

Current Consumption During Normal Operation

Master
Slave 1
Slave 2
Slave 3
Slave 4

Synchronisation with master

10 ms

Figure 3.24: Time graph of the current consumption during normal operation of
master and slave nodes.

3.3.9.3 Dynamic Operation

Figure 3.25 depicts a time graph of the current consumption when a slave
takes over the master role. Two other slaves are active when the master sud-
denly fails. When the counters in the slave nodes are reset, a synchronisation
action is initiated and all slaves begin to listen for a package from the master.
According to (3.1), the node using timeslot 1 receives a time-out after 60 ms,
which is also indicated in the graph. At that point the slave decides to take
over the master role and immediately transmits an RF package. This trans-
mission is also visible in the graph as a very small peak. An other active slave
using a timeslot with a higher number will pick up this master packet and
resume normal operation afterwards. From this node’s point of view, nothing
has changed in the network, it still fulfills the same role.

3.3.9.4 Collision Detection

The time graph in figure 3.26 represents the current consumption in the event
of multiple active masters. In order to trigger this condition, one node has been
programmed to simply assume the master role at startup and never even check
if another master is present. After activating three other nodes, of which only
one becomes the master, this additional node was powered and the role change
in the master was observed. According to the wireless protocol, a master will

134 System Design

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Time [ms]

C
ur

re
nt

[m
A

]

Current Consumption During Takeover

New Master
Active Slave

Receive time-out (60 ms)

First packet
transmission

as master

Figure 3.25: Time graph of the current consumption in two slaves in the event that
one of the slaves takes over the master role after a time-out occurs.

check on a random basis if another master is present in the network. This event
occurs in the graph and after approximately 5 ms another master is detected.
The node will then switch to the slave RF channel and start scanning for an
available timeslot. This procedure lasts about 60 ms and several spikes are
visible where data from an active slave is received. When all reconfiguration is
completed, a free timeslot is chosen and the new slave starts by synchronising
its transmissions with the other master. Note that the spikes caused by data
reception from active slaves in the first two timeslots are not synchronised with
the active master, but with the reconfiguring master as they appear before the
active master’s transmit peaks. The synchronisation with the active master
will only occur when the internal counter of the slaves is reset.

A similar timegraph of the current consumption where a slave detects a
conflicting node operating in the same timeslot is displayed in figure 3.27.
To trigger the requested situation, one node was programmed specifically
to become a slave using the first timeslot without checking for conflicts or
availability. The normal slave goes through the reconfiguration procedure
after detecting the conflict and finds a different available timeslot. It starts
operating in the new timeslot by synchronising its transmission with the master
and transmits its first packet in the new timeslot 92 ms after the collision
detection. Note that the collision detection only takes place at the very end
of the conflict detection period as the receiver is not yet fully activated when

Network Protocol 135

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Time [ms]

C
ur

re
nt

[m
A

]

Current Consumption During Master Conflict

Reconfigured Master Active Master

Conflict detected

Slave scan
Synchronisation

Figure 3.26: Time graph of the current consumption in two conflicting master nodes
in the event that one of them detects a conflict and reconfigures itself as a slave.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Time [ms]

C
ur

re
nt

[m
A

]

Current Consumption During Slave Conflict

Reconfigured Slave Active Slave

Conflict detected

Figure 3.27: Time graph of the current consumption in two conflicting slave nodes in
the event that one of them detects a conflict and reconfigures itself to use a different

timeslot.

136 System Design

the conflicting slave transmits a package.
The extra conflict detection mechanism also adds to the current consump-

tion of the nodes. However, as this check is performed on a random basis, no
fixed value can be associated with it. Activating the receiver will result in a
current consumption peak with a duration of 10 ms and a value of 26.5 mA.
Detection is performed every 5 to 13 s and will thus add anything between
53 µA and 20 µA to the average current consumption of a node.

3.3.10 Protocol Performance

The graphs in Figures 3.23 and 3.24 allow to estimate the maximum number
of nodes that would be able to operate within the available 10 ms timeframe.
However, extra time within this timeframe has to be reserved to allow the base
station to fulfill its entire function, i.e. the transmission of the received data
to a computer via one of the available interfaces. Tests have been executed
with varying timeslot lengths to find the minimal allowed period required to
avoid data loss or collision. The results showed that with a timeslot length
of 0.85 ms only sporadically packets are lost, indicating that these losses
can be attributed to the inherent sensitivity of wireless communication to the
environment. Note that this also indicates that the effect of clock drift is
included in this period, since bursts of packet loss would otherwise occur.
Furthermore, the maximal number of simultaneously active slaves has been
determined. With nine slaves active in each of the two available RF channels,
the base station is still capable of communicating all of the data through within
the remaining timespan. This means that a total of 19 nodes (one master and
eighteen slaves) are capable of communicating at a rate of 100 samples per
second with a single base station.

Given the very application specific nature of the protocol, only a com-
parison with wireless protocols used in other orientation tracking systems is
relevant. A maximum of 32 commercially available wireless sensor nodes by
XSens [38] can communicate at a rate of 20 Hz with a single base station.
When reducing the amount of nodes to 12, 6 and 1, the datarate can be
increased to respectively 50 Hz, 75 Hz and 120 Hz. The Orient system [39]
designed by the University of Edinburgh supports the use of 15 nodes at a
rate of 64 Hz. Clearly, the protocol presented here performs better than both
of these systems.

3.3.11 Alternative Implementations

The described protocol was also implemented on other sensor node systems.
However, the restrictions and required functionality of these systems needs to
be taken into account when porting the protocol.

Network Protocol 137

3.3.11.1 Third Generation MARG Nodes

As the MARG nodes contain the same platform as the MFG nodes, the required
adjustments are limited. Actually the only difference originates in the presence
of the gyroscope. The data of the gyroscope consists of six additional bytes
that need to be transferred to the base station. These bytes are added to the
data package of figure 3.17 and enlarge it to a size of 15 bytes. The result
is that the used timeslot size will also need to be increased as more data is
transferred and needs to be processed on the base station side. This in turn
leads to less nodes that can function with a single base station.

As with the MFG case, tests have indicated that a timeslot length of
1.12 ms leads to occasional package loss. The result is that only seven slaves
can be active at the same time in each RF channel. Luckily, this results in a
total of 15 simultaneously active nodes for each base station, which is exactly
the amount that was put up front in the requirements.

The current consumption graph of MARG nodes is very similar to those
given in section 3.3.9. The only difference is an offset current consumed by
the gyroscope which amounts to approximately 6.5 mA. As the 50 ms turn-on
time of this component also exceeds the timeframe length, it is never put in
sleep mode. Note that the average current consumption of a MARG sensor
node turns out to be more than three times the consumption of MFG nodes.
Hence, with the use of the same battery as mentioned before [18], a lifetime
of only four and a half day can be reached.

3.3.11.2 Second Generation

An important drawback of the second generation nodes is that the chosen
RF transceiver does not offer the dual receiver feature. Hence, only one
slave channel can be used and the number of nodes per base station will be
lower. Tests have shown that the timeslot lengths determined for the third
generation can be reused for this generation. Therefore, the maximum number
of supported nodes per base station equals eight when the nodes transmit all
of their information and ten when the gyroscope data is omitted.

Figure 3.28 shows a time graph of the current consumption in a second
generation node operating as a master. Note that it concerns a node where
the gyroscopes were not assembled to the board. The general form of the
curve resembles the third generation current consumption graph of figure 3.23,
yet the overall average consumption lies somewhat higher at about 8 mA. A
fully assembled MARG node consumes an extra fixed current of approximately
17.5 mA due to both active gyroscopes. This translates in a lifetime of five
days for an MFG node powered by the Varta PoliFlex battery [18], while a
MARG node only lasts two and a half days with the same power source.

138 System Design

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

Time [ms]

C
ur

re
nt

[m
A

]

Current Consumption Second Generation

Figure 3.28: Time graph of the current consumption in a second generation master
node without gyroscopes. The dashed line indicates the average consumption over

time.

3.4 Firmware Filter Implementation

When a large amount of sensors are active simultaneously, lots of data is
generated and delivered to the backend computer. The result is that this
computer is no longer capable of calculating the orientation of each of these
nodes within the restricted timeframe using the filters described in section 2.4.
The solution is to divide the workload of orientation tracking to the available
processing power in the system, namely the microcontrollers.

Transferring the implementation of the filter from PC software to embedded
firmware is however not a simple copying task. The microcontrollers are not
equipped with the same amount of processing power that modern computers
have available. While modern everyday computers run at a clock frequency
of several GHz, contain large quantities of memory and feature multiple pro-
cessing cores capable of handling 32 bit or even 64 bit operations in parallel,
a low power microcontroller is much more restricted in its resources.

In this section, the different steps in the implementation of the orientation
filter in firmware for the third generation nodes is described. The focus is on
the MFG nodes, yet an extension for the MARG nodes is also discussed. The
third generation is chosen over the second generation since the selected TI
microcontroller features 16 bit operations and a hardware multiplier while the
Atmel is only an 8 bit device.

First, the filter is chosen that will be implemented in firmware. Next, a

Firmware Filter Implementation 139

fixed point number format is defined that will be used to represent the real
numbers encountered in the filter implementation and sensor output processing
in the embedded version is discussed. Then the actual Kalman filter algorithm
is converted and a number of optimisations that reduce the number of oper-
ations to an absolute minimum are presented. Afterwards, the data package
format is shown and the resulting impact of the embedded calculations on the
current consumption is demonstrated. Finally, some solutions are suggested
to possible issues for embedding of a MARG type filter.

3.4.1 Filter Choice

Choosing one of the filters from section 2.4 for implementation in firmware
is mostly based on two important criteria: the number of operations and the
type of operations used in the algorithm. The filter with the least amount of
operations, the Euler type EKF, has already been ruled out in chapter 2 due
to its slow step response. An SPKF mostly requires more operations than
an EKF, yet the state dimension is different for both representation types.
However, in the end the trigonometric functions associated with Euler angles
have to be taken into account, as well as the gimbal lock singularity. A quick
test showed that calculating a cosine requires approximately 200 times more
time than a single multiplication. Therefore, the quaternion EKF is finally
chosen as the candidate for embedded implementation.

3.4.2 Fixed Point Notation

On modern computers, real numbers are mostly represented by a floating point
system. A number is then approximated by a significant, scaled by a certain
exponent [40]:

Number ≈ Significant × BaseExponent (3.2)

The term floating refers to fact that the location of the digital point can be
anywhere within the significant of the sequence. The advantage of this type of
representation lies in the high dynamic range that is obtained. In other words,
the distance between two subsequent numbers is coupled to the magnitude
of these numbers. The downside is the execution time and complexity of
mathematical operations, which is a direct result of the very nature of the
representation. Addition and subtraction cannot be executed using standard
integer operations. The exponents must first be equal, then the significants
can be added or subtracted and the final result is obtained. For multiplication,
significants are multiplied, yet exponents must be summed and the result must
then be normalised to conform to the notation.

140 System Design

An alternative to floating point numbers is found in the fixed point repre-
sentation format. Contrast to the floating point format, the decimal point is
now placed at a fixed place within the bit stream. A fixed point bitstream b is
thus separated in two parts, the integer bits left and the fractional bits right
of the decimal:

b = b1b2b3 . . . bm−1bm . bm+1bm+2 . . . bn−1bn, (3.3)

where n is the number of bits in the sequence and m < n is the number of
integer bits. Similar to the integer case, the real number x represented by an
unsigned bitsequence can be reconstructed by adding up the corresponding
powers of two:

x =
n
∑

i=1

bi 2n−m−i−1 (3.4)

Due to this similarity with integer numbers, the summation of fixed point
numbers does not require any additional function definitions. Multiplication
is easily implemented using the integer multiplication followed by bitshift op-
erations to validate the result. The disadvantage of fixed point formats lies
in the fact that the accuracy and range fully depend on the chosen number
of bits and the location of the decimal point. Therefore, the distance between
two subsequent numbers is always equal to the power of two associated with
the least significant bit, much like the distance between two integers is al-
ways 1. The result is a much lower dynamic range and higher rounding error
with multiplications. Note that signed fixed point numbers also exist, the 2’s
complement formalism [37] is mostly used to achieve this.

Given the fact that many matrix operations need to be executed to imple-
ment the tracking filter, the speed of operations is of major importance for the
choice of number format. Moreover, since none of the devices are equipped
with a Floating Point Unit (FPU) providing fast and efficient floating point
operations, the fixed point format is clearly the best option. This choice is
also validated by tests showing that the execution time of a summation of two
floats is about 100 times the execution time of the summation of two integers
of the same bitlength.

3.4.2.1 Format

When choosing the fixed point format, the range and precision form the im-
portant criteria that determine the size of the integer and fractional part.
The total number of bits should preferably equal one of the standard integer
lengths supported by the compiler, such as 16 for a short or 32 for a long.
The maximal precision obtainable with a 16 bit fixed point number format is

Firmware Filter Implementation 141

#de f ine BASE24 16777216
t ypede f long f i x ed8_24 ;

Code Segment 3.1: Fixed point format

approximately 3 × 10−5, when only a single integer bit is chosen. This is not
low enough considering the recommended value for the covariance matrices
in the quaternion version of the tracking filter. Moreover, in the entire filter
calculation, numbers should then not exceed unity, which is highly unlikely.
Therefore, a 32 bit length is put up front.

A good trade-off between a descent range and a fine precision is a choice
of 24 fractional and 8 integer bits. Given the fact that signed numbers are
used, this choice offers an integer range from −128 to 127 and a precision
of 5.96 × 10−8. In code, the two lines given in code segment 3.1 were added
to reflect this choice. The BASE24 variable equals 224, which is the binary
representation of unity in the fixed point format. The typedef defines a new
type for the fixed point format which is stored as a long.

3.4.2.2 Multiplication

Fixed point multiplication is based on underlying integer multiplication fol-
lowed by a bit shift operation to obtain a result in the same fixed point format.
However, multiplication of bitsequences commonly results in overflow and the
product might require a bitsequence of twice the arguments’ length. Also,
since many bits represent values below the decimal point, rounding will be
needed as the result will contain bits far below the range of the chosen fixed
point format.

Multiplication is an inherently more complex operation to perform on mi-
crocontrollers compared to summation. Therefore, many of them are equipped
with a Hardware Multiplier (HWM) to shorten the execution time. Considering
the fact that the MSP430 family only features a 16 bit HWM, the multipli-
cation of fixed point numbers according to the chosen format will have to be
executed in several steps. The results from each of the steps should then
be added together in the appropriate manner. Code segment 3.2 shows the
implementation.

Since the bitsequences are to be split in two for multiplication, problems
occur when an operand represents a negative number. Therefore, this is first
tested and negative numbers are negated to their positive counterpart. If only
one of the operands is a negative number, a boolean is set to indicate that
the result should also be negated afterwards. Both operands are now positive
and can be multiplied in four subsequent multiplications using the HWM.

First, the most significant sixteen bits of each operand are multiplied.

142 System Design

/ / Mu l t i p ly two f i x e d p o i n t numbers
f i x ed8_24 Mult8_24 (f i x ed8_24 a , f i x ed8_24 b){

/ / Declare r e t u r n v a r i a b l e
f i x ed8_24 RES_LSB = 0 ;
f i x ed8_24 RES_MSB = 0 ;
char nega t i v e = 0 ;

/ / Sign t r o u b l e
i f (a < 0){

i f (b < 0){
b = -b ;

}
e lse {

nega t i v e = 1 ;
}
a = -a ;

}
e lse {

i f (b < 0){
nega t i v e = 1 ;
b = -b ;

}
}

/ / Use Hardware m u l t i p l i e r f o r 4 sepa ra te m u l t i p l i c a t i o n s
MPYS = a >> 16;
OP2 = b >> 16;
RES_MSB = RESHI << 8 ;
RES_MSB += RESLO >> 8 ;
RES_LSB = RESLO << 8 ;
MPY = b >> 16;
OP2 = a ;
MAC = a >> 16;
OP2 = b ;
RES_LSB += RESHI << 8 ;
RES_LSB += RESLO >> 8 ;
RES_MSB += RESHI >> 8 ;
MPY = a ;
OP2 = b ;
RES_LSB += RESHI >> 8 ;

/ / S h i f t r e s u l t i n t o f i x e d p o i n t fo rm
RES_MSB = RES_MSB << 16;
RES_MSB += RES_LSB ;

/ / Sign t r o u b l e
i f (n ega t i v e == 1)

RES_MSB = -RES_MSB;

/ / Return r e s u l t
r e t u r n RES_MSB;

}

Code Segment 3.2: Fixed point multiplication function

Firmware Filter Implementation 143

/ / Square r o o t f u n c t i o n by c o n v e r s i o n to f l o a t i n g p o i n t
f i x ed8_24 Sqrt8_24 (f i x ed8_24 x){

/ / Conver t t o f l o a t i n g p o i n t
f l o a t t = x ;

/ / Ca l cu l a t e s q r t
t = s q r t (t /BASE24) ;

/ / Conver t back to f i x e d p o i n t r e p r e s e n t a t i o n
x = (f i x ed8_24) (t * BASE24) ;

/ / Return the r e s u l t
r e t u r n x ;

}

Code Segment 3.3: Fixed point square root through floating point

These bits actually form a fixed point number with eight integer and eight
factional bits. The result consists of 32 bits, of which 16 are integer bits
and the other 16 are fractional. Overflow occurs when one of the eight most
significant bits of this result is not zero, since the result should be a positive
number and the integer value should fall below the upper boundary of the fixed
point representation. The second and third multiplication are between the 16
most significant bits of one operand and the 16 least of the other. Here, the
multiply accumulate functionality can be used since both results are a fixed
point number with only fractional bits. The last multiplication is between the
least significant 16 bits of each operand and only the highest eight bits of this
result are actually retained in the result as all others fall below the precision
of the chosen fixed point format.

The three results are stored in two intermediate variables, one for each
half. Note however that both of these variables are actually 32 bits in size to
account for shift operations outside of the 16 bit range and to support possible
overflow in the lowest part. The full result is finally shifted in place just before
a possible negation of the result.

3.4.2.3 Square Root

The quaternion EKF algorithm uses a couple of square root evaluations. Sen-
sor data and quaternion output e.g. need to be normalised each step. Fur-
thermore, square roots will also need to be calculated for the matrix inversion
present in the Kalman filter algorithm. Unlike addition or multiplication, a
square root operation is not linear and cannot be implemented directly. Sev-
eral options exist for fixed point square root calculation.

The first and most straightforward option is shown in code segment 3.3.

144 System Design

/ / Cons tants
DEFINE FRACBITS 24
DEFINE ITERS 15+(FRACBITS>>1)

/ / Recu r s i v e square r o o t o f a f i x e d p o i n t number
f i x ed8_24 RecSqrt (f i x ed8_24 x){

unsigned long roo t , remHi , remLo , t e s tD i v , count ;

/ / C lear r o o t
r o o t = 0 ;

/ / C lear high pa r t o f p a r t i a l remainder
remHi = 0 ;

/ / Get argument i n t o low pa r t o f p a r t i a l remainder
remLo = x ;

/ / Load loop coun te r
count = ITERS ;
do {

/ / get 2 b i t s o f arg
remHi = (remHi << 2) | (remLo >> 3 0) ; remLo <<= 2 ;

/ / Get ready f o r the nex t b i t i n the r o o t
r o o t <<= 1 ;

/ / Test r a d i c a l
t e s t D i v = (r o o t << 1) + 1 ;
i f (remHi >= t e s t D i v) {

remHi -= t e s t D i v ;
r o o t += 1 ;

}
} whi le (count - - != 0) ;
r e t u r n (r o o t) ;

}

Code Segment 3.4: Fixed point recursive square root calculation

The code uses the standard command Math.sqrt() defined in the math library
to calculate the square root of the given number after converting it to a float.
The final result is then obtained by converting the square root float number
back to a fixed point number.

A second solution is to use a well known recursive algorithm as described
by [41]. The application of this algorithm to the specific fixed point format is
given in code segment 3.4. No conversion to or from a floating point number
is now needed to calculate the square root. Note that the outcome of this
algorithm yields the exact same result as the floating point conversion method
in code segment 3.3.

The third and final option is known as the Quake square root approxima-

Firmware Filter Implementation 145

/ / Ca l cu l a t e the i n v e r s e o f the square r o o t o f a f i x e d p o i n t number
f i x ed8_24 InvSqr t8_24 (f i x ed8_24 x){

/ / Def ine a help v a r i a b l e h a l f the s i z e o f x
f i x ed8_24 x h a l f = x >> 1 ;

/ / Conver t x to a f l o a t v a r i a b l e
f l o a t t = x ;

/ / Store f l o a t i n g - p o i n t b i t s i n long
long i = * (long *)& t ;

/ / I n i t i a l guess f o r Newton ’ s method
i = 0 x5f3759d5 - (i >> 1) ;
x = (f i x ed8_24) (* (f l o a t *)& i * BASE24 * 4096) ;

/ / One round o f Newton ’ s method
x = Mult8_24 (x , (0 x01800000 - Mult8_24 (x h a l f , Mult8_24 (x , x)))) ;

/ / Return the r e s u l t
r e t u r n x ;

}

Code Segment 3.5: Fixed point inverse square root

tion, as it appeared in the source code of the first person shooter game Quake

III [42]. The implementation is given by code segment 3.5. It is based on
Newton approximation [43] and a magic constant that is used to create a very
good initial guess [44]. This way, the Newton method must only be run once
to obtain a result with a maximal error of 0.175 %. Note that the algorithm
requires the fixed point number to be converted to a floating point number as
was the case in the first code segment. When the floating point number is
converted back into a fixed point number, it needs to be multiplied by the base
and by the square root of the base as it is an initial guess of the inverted
square root in fixed point notation. Furthermore, the inverse of the square
root rather than the square root itself is in fact calculated. This is however
not an issue as the code is mostly used to normalise vectors. In this case the
vector components should be divided by the square root of the norm, requiring
a division operation. With the inverse of the square root, multiplication can
be used.

The performance of all three code segments was compared in a test program
where the square root of 1000 randomly generated numbers is calculated. A
timer sourced by the watch crystal was used as a time reference. The standard
math method required an average time of 201 µs to complete one square root
calculation when the microcontroller runs at its maximal clock frequency of
16 MHz. Running at the same settings, the recursive and the Quake code

146 System Design

respectively take 103 µs and 64 µs.

3.4.3 Sensor Output Processing

As all of the filter calculations will be executed using the fixed point represen-
tation, all of the sensor data must first be converted to the appropriate format.
Furthermore, calibration constants will need to be present on the sensor node
as they must be applied before the data is actually valid and can be used for
tracking purposes. Finally, the digital filter must also be applied in order to
provide additional high frequency noise filtering.

3.4.3.1 Calibration

The calibration procedure itself is still executed as described in section 2.4.2.2
and requires the nodes to be programmed to transmit their sensor data to the
backend computer. The resulting constants must however be available for
the microcontroller to apply them to the sensor outputs. Instead of including
the values in the firmware, they are stored in a protected part of the flash
memory called the information memory, which is not necessarily erased when
a new program is loaded to the device. Recall that the sensor node ID is
also programmed in this part of the memory. Although this requires manual
programming from the designer, this way of working allows all of the nodes to
be programmed with the same code and without any magic numbers.

3.4.3.2 Accelerometer

The accelerometer output is a digital sequence of a single byte. The conversion
to a fixed point number representing acceleration in g is obtained by first
converting the byte value to a signed char and copying this value into a long.
Then the bits in this long are shifted to the left such that the most significant
bit of the original byte is in the position of the least significant integer bit of
the fixed point representation. Finally, the resulting number is multiplied by
the range of the accelerometer in fixed point format to obtain the final value.
The code implementation is given by code segment 3.6. Note that although
the sensor’s range has been configured to ±2 g since the other alternative of
±6 g is not useful for the application at hand, the real maximum and minimum
output value typically correspond to ±2.5 g.

3.4.3.3 Magnetometer

The magnetometer output consists of two parts that need to be added together:
a rough offset value and the fine measurement result. The rough offset is
obtained at startup, when the sensor is ordered to perform a measurement over

Firmware Filter Implementation 147

/ / Conver t a c c e l e r ome t e r ou tpu t
f i x ed8_24 * Conver tAcc (unsigned char adata []) {

/ / Declare r e t u r n v a r i a b l e
f i x ed8_24 acc [3] ;

/ / Conver t s igned
acc [0] = (signed char) adata [0] ;
acc [1] = (signed char) adata [1] ;
acc [2] = (signed char) adata [2] ;

/ / S h i f t i n p lace
acc [0] <<= 17;
acc [1] <<= 17;
acc [2] <<= 17;

/ / Mu l t i p ly by range (=2.5 g)
acc [0] = Mult8_24 (acc [0] , 0x0280000000) ;
acc [1] = Mult8_24 (acc [1] , 0x0280000000) ;
acc [2] = Mult8_24 (acc [2] , 0x0280000000) ;

}

Code Segment 3.6: Accelerometer output conversion to fixed point format

its entire range which returns a 5 bit number. From then on, fine measurements
are done in a part of the sensor’s range around the rough offset result, giving
a 10 bit output. Both results must however be combined to obtain a number
that indicates the real value of the measurement. Furthermore, a factory
calibration has been included in the memory of the device which must be
applied to the resulting value. Finally, this result must be converted to the
fixed point implementation in order for it to be used by the tracking filter. The
code implementing all of this is given by segment 3.7.

Before the output is converted to the final fixed point format, an intermedi-
ate fixed point representation is used with ten fractional and six integer bits.
The decimal point is chosen such that the rough offset precision equals unity,
thus at least six integer bits were needed to allow a signed representation.
The fine measurements are taken over a range of four rough intervals and
divide this space into 1024 intervals given the 10 bit precision. This means
that the two most significant bits also contribute to the integer bits of the
fixed point format, while the other eight will correspond to the most signifi-
cant fractional bits. Also note that 15 is subtracted from the resulting value
to obtain a symmetric range.

Since the intermediate fixed point representation is used for the sensor
output, the calibration values are also represented this way. Multiplication of
both sequences can easily be implemented using the HWM and only requires
one step given the fact that the numbers now only consist of 16 bits. Finally,

148 System Design

/ / Conver t magnetometer ou tpu t
f i x ed8_24 * ConvertMag (unsigned char f i n e []) {

/ / Declare r e t u r n v a r i a b l e
f i x ed8_24 mag [3] ;

/ / Declare temporary 16 b i t f i x e d p o i n t v a r i a b l e s
s h o r t x , y , z ;
s h o r t mdata [3] ;

/ / Ca l cu l a t e f i x e d p o i n t r e p r e s e n t a t i o n and add rough o f f s e t va lue
x = ((rough [0] + (f i n e [4] & 0x03) - 15) << 10) | (f i n e [5] << 2) ;
y = ((rough [1] + (f i n e [2] & 0x03) - 15) << 10) | (f i n e [3] << 2) ;
z = ((rough [2] + (f i n e [0] & 0x03) - 15) << 10) | (f i n e [1] << 2) ;

/ / Apply f a c t o r y c a l i b r a t i o n
mdata [0] = x + Mult6_10 (b [1] , y) + Mult6_10 (b [2] , z) ;
mdata [1] = Mult6_10 (b [3] , x) + Mult6_10 (b [4] , y) + Mult6_10 (b [5] , z) ;
mdata [2] = Mult6_10 (b [6] , x) + Mult6_10 (b [7] , y) + Mult6_10 (b [8] , z) ;

/ / Copy to long
mag [0] = mdata [0] ;
mag [1] = mdata [1] ;
mag [2] = mdata [2] ;

/ / S h i f t i n p lace
mag [0] <<= 14;
mag [1] <<= 14;
mag [2] <<= 14;

}

Code Segment 3.7: Magnetometer output conversion to fixed point format

a shift operation of 14 bits to the left converts the intermediate fixed point
number into the final representation with eight integer and 24 fractional bits.

3.4.3.4 Digital Filter

The digital filter is implemented using the proposed fixed point format. Since it
is a third order inverse Chebychev type filter, it requires seven multiplications
and six summations per application. There are three values on each of the
sensors, resulting in a total of 42 multiplications and 36 summations each
cycle.

3.4.4 Kalman Filter Algorithm

The execution time of the Kalman filter algorithm implementation can be re-
duced by optimising some of the matrix operations that are used. First of all,
several simplifications can be introduced to reduce the number of matrix oper-

Firmware Filter Implementation 149

ations needed for the implementation of the algorithm. Second, many matrices
are in fact symmetric as they represent a covariance, which means only the
upper or lower triangular should be calculated. And third, the matrix inversion
can also be accelerated when taking into account the symmetric form of the
matrix to invert.

Note that the adaptive feature of the filter will not be implemented in the
embedded version. The reason lies in the fact that the R matrix cannot be
chosen as small as has been put forward in section 2.5.2.1, since this causes
overflow to occur at the point where matrix inversion is needed. Therefore, the
increased value will already make the filter less sensitive to disturbances.

3.4.4.1 Simplifications

The extended Kalman filter equations used in the quaternion MFG filter are
repeated here for convenience:

x̂k = x̂k−1 + τ (x̂k−1 − x̂k−2)

Pk = Ak Pk−1 ATk + Qk

Kk = Pk HT
k

(

Hk Pk HT
k + Rk

)−1
(3.5)

x̂k = x̂k + Kk (zk − hk (x̂k))

Pk = (In×n − Kk Hk) Pk

First of all, it should be noted that the a priori and a posteriori estimate
and corresponding error covariance can be stored in the same variable as when
one of them is calculated, there is no need to store the other. Therefore, the
superscript minuses have been dropped in the above equations.

The prediction step can further be simplified when taking into account that
A is actually an identity matrix and Q is diagonal. Therefore, the prediction
error covariance can be determined using only four summations.

The term P HT actually appears twice in the calculation for K and can
thus be saved as a temporary variable further denoted as PHT. The transpose
of this term can also be found in the last equation when it is rewritten:

Pk = (In×n − Kk Hk) Pk

= Pk − Kk Hk Pk

= Pk − Kk

(

PT
k HT

k

)T

= Pk − Kk

(

Pk HT
k

)T

where the symmetrical form of P has been used and the fact that the
transpose of a product of matrices equals the product of the transposed terms
in reverse order.

150 System Design

/ /PHT = P * Transpose (H)
f o r (i =0; i<n ; i ++){

f o r (j =0; j <m; j ++){
PHT [i] [j] = Mult8_24 (P [i] [0] , H [j] [0]) ;
f o r (k=1; k<i +1; k++){

PHT [i] [j] = PHT [i] [j] + Mult8_24 (P [i] [k] , H [j] [k]) ;
}
f o r (k=i +1; k<n ; k++){

PHT [i] [j] = PHT [i] [j] + Mult8_24 (P [k] [i] , H [j] [k]) ;
}

}
}

/ /HPHT = H * PHT = H * P * t ranspose (H)
f o r (i =0; i<m; i ++){

f o r (j =0; j <i +1; j ++){
HPHT[i] [j] = Mult8_24 (H[i] [0] , PHT [0] [j]) ;
f o r (k=1; k<n ; k++){

HPHT[i] [j] = HPHT[i] [j] + Mult8_24 (H[i] [k] , PHT [k] [j]) ;
}

}
}

Code Segment 3.8: Symmetric matrices

3.4.4.2 Symmetric Matrices

All of the matrices representing a covariance are symmetric. Furthermore,
left multiplication of a symmetric matrix with an arbitrary matrix and right
multiplication with its transpose also yields a symmetric matrix. Therefore,
the following matrices are symmetric:

P Q R

H P HT H P HT + R K H P (3.6)

From all of these matrices, only the lower triangular part is stored as this
covers all necessary information. This should however be taken into account
when using the matrices in further calculations. Both aspects can be found in
code segment 3.8, where PHT is calculated from the symmetric matrix P and
HPHT is a symmetric matrix by itself. In the fist part, care has been taken
not to address any elements from P that are in the upper triangular part, as
these are invalid. The for loop has therefore been separated into two loops.
In the second part, it is clear that only the lower triangular part is calculated
since the index of the second for loop never exceeds the index of the first.

Firmware Filter Implementation 151

3.4.4.3 Symmetric Inversion

In general, matrix inversion is a very complex and time consuming operation to
perform. It can be accomplished by using either the Gauss-Jordan elimination
algorithm or LU decomposition [45]. In the first, a matrix is augmented with
an identity matrix, linear operations are used to reduce the initial matrix to
an identity matrix and the inverse is then found in the augmented part. The
latter method first decomposes a matrix into an upper and lower triangular
matrix, inverts both these matrices and multiplies them again in reverse order
to find the inverse of the original matrix.

The inversion of a symmetric matrix is slightly easier to perform since these
matrices can be decomposed using Cholesky decomposition [46], which yields
a single triangular matrix such that the original matrix equals the product
of this triangular matrix with its transpose. The inverse matrix can now be
calculated by inverting only one triangular matrix.

M−1 =
(

L LT
)−1

= L−1T L−1 (3.7)

Cholesky Decomposition

Code segment 3.9 implements the Cholesky decomposition. In each step, one
row of the triangular matrix is calculated recursively by substitution. Note
that some handy tricks are incorporated to avoid having to recalculate certain
values. The array variable t[] is used to store all the inverse square roots of
the diagonal elements of the original matrix, which is reused in the calculation
of the off diagonal elements. Note however that the diagonal elements equal
the square root itself and thus an inversion is needed. Since the fixed point
division has not been implemented, this is accomplished by converting the
number to a float representation, inverting the float and reverting to the fixed
point notation. This method turns out to be faster than computing the square
root directly using any of the other methods proposed in section 3.4.2.3.

Triangular Matrix Inversion

Triangular matrix inversion is implemented by code segment 3.10 and is easily
obtained through substitution. Important to know is that the inverse of a
triangular matrix is also triangular. From this quickly follows that the diagonal
elements of the inverse matrix equal the inverse of the diagonal elements. This
again requires a division that is done via floating point representation. The off
diagonal elements can be calculated using the resulting diagonal elements.

152 System Design

/ / Cholesky decompos i t i on o f M wi th s i de m
f i x ed8_24 * Cholesky (f i x ed8_24 * M, i n t m){

/ / Declare r e t u r n and temporary v a r i a b l e s
f i x ed8_24 L [m] [m] ;
f i x ed8_24 sum ;
f i x ed8_24 t [m] ;

/ / Decompos i t ion
f o r (i =0; i<m; i ++){

/ / O f f d iagona l e lements
f o r (j =0; j <i ; j ++){

sum = 0 ;
f o r (k=0; k<j ; k++){

sum = sum + Mult8_24 (L [i] [k] , L [j] [k]) ;
}
L [i] [j] = Mult8_24 ((M[i] [j] - sum) , t [j]) ;

}

/ / Diagonal e lements
sum = 0 ;
f o r (k=0; k<i ; k++){

sum = sum + Mult8_24 (L [i] [k] , L [i] [k]) ;
}
t [i] = InvSqr t8_24 (M[i] [i] - sum) ;
f l o a t x = t [i] ;
x = BASE24 / x ;
x = x * BASE24 ;
L [i] [i] = (f i x ed8_24) x ;

}

/ / Return r e s u l t
r e t u r n L ;

}

Code Segment 3.9: Cholesky decomposition

3.4.5 Wireless Data Package

Since the functionality of the wireless protocol and the settings of the RF
transceiver chip change when the size of the wireless data packet is altered,
it would be beneficial to keep this length fixed. The MFG packet format has
already been explained in section 3.3.2 and is shown in figure 3.17. The total
size of this package is 11 bytes, where the first two are vital for the correct
functioning of the protocol and the recognition of the sensor node data at the
base station and backend computer side. That leaves us with nine available
bytes for the resulting orientation quaternion consisting of four times four
bytes, 16 in total.

As has been shown in section 2.2.2, an orientation quaternion needs to be

Firmware Filter Implementation 153

/ / I n v e r s i o n o f a lower t r i a n g u l a r m a t r i x wi th s i de m
f i x ed8_24 * I n v e r t T r i a n g u l a r (f i x ed8_24 * L , i n t m){

/ / Declare r e t u r n and temporary v a r i a b l e s
f i x ed8_24 L in v [m] [m] ;
f i x ed8_24 sum ;

/ / Ca l cu l a t e i n v e r s e
f o r (i =0; i<m; i ++){

/ / L i n v [i] [i] = 1 / L [i] [i]
f l o a t x = L [i] [i] ;
x = BASE24 / x ;
x = x * BASE24 ;
L i n v [i] [i] = (f i x ed8_24) x ;

/ / L i n v [i] [j] = - L in v [i] [i] * sum (L [i] [k] * L i n v [k] [j] , k=j . . i - 1)
f o r (j =0; j <i ; j ++){

sum = 0 ;
f o r (k=j ; k<i ; k++){

sum = sum - Mult8_24 (L [i] [k] , L i n v [k] [j]) ;
}
L i n v [i] [j] = Mult8_24 (L i n v [i] [i] , sum) ;

}
}

/ / Return r e s u l t
r e t u r n L in v ;

}

Code Segment 3.10: Triangular matrix inversion

normalised, which implies that one of the components, e.g. the scalar part, can
be reconstructed apart from its sign:

t = ±
√

1 −
(

x2 + y2 + z2
)

(3.8)

However, both q and −q represent the same orientation as shown by (2.27).
Thus, by choosing the quaternion with positive scalar part as the standard,
reconstruction can indeed be applied at the backend side and only three
components will need to be transmitted. Since all three are equally important
and nine bytes are available, they will need to be repacked into three bytes
each.

From the normalisation condition also follows that the quaternion only
contains elements that are bound between 1 and −1. This clearly indicates
that the most significant six bits of the fixed point representation used in the
above are actually superfluous as they will either equal zero if it concerns a
positive number or one in the case of a negative number. Given the fact that
eight bits need to be dropped, the least significant two bits of the fractional

154 System Design

part will also be omitted resulting in a new fixed point representation of
the quaternion parts in the data package consisting of two integer and 22
fractional bits. The resulting data package is displayed in figure 3.29.

Master: Packet Counter
Slave: Timeslot Number

Node
ID

1 Byte 1 Byte 3 Bytes 3 Bytes3 Bytes

Quat
X

Quat
Y

Quat
Z

Figure 3.29: Contents of the RF data package when nodes perform embedded
orientation tracking.

3.4.6 Current Consumption

The current consumption of a third generation MFG node running the orienta-
tion estimation filter in firmware is displayed in figure 3.30. When the graph
was taken, the node was operating as the network master. In general, the
resulting graph resembles the normal consumption graph displayed in figure
3.23 aside from the consumption due to the active microcontroller. This corre-
sponds to a constant consumption of approximately 7.5 mA for almost 7.5 ms.
The resulting average current consumption amounts to 6.5 mA leading to a
lifetime of six days when using a Varta PoliFlex battery [18].

The result shown here was obtained using the inverted square root approx-
imation which exhibits the lowest execution time. Since almost 1.5 ms remain
available, the recursive implementation could also be used, yet no improved
behaviour was found, only an increase in current consumption. Important
to mention is the fact that the multiplication procedure described in section
3.4.2.2 has been simplified by removing the final multiplication between the
lowest significant bits as its influence on the output result seemed minimal.

At this point, the current consumption per node can be compared to other
known systems since these all incorporate on board orientation estimation.
Note however that it concerns MARG systems, which inherently consume
more power. The Orient system from the University of Edinburgh [39] has a
lifetime of approximately two hours on a 120 mAh battery. Hence the average
current consumed by a single node is around 60 mA. Unfortunately, XSens
only mention that their wireless sensor nodes [38] have an autonomy of three
and a half hours without mentioning the battery capacity. Hence the only
conclusion that can be drawn is that the system presented in this dissertation
can last a lot longer than the existing solutions given the battery choice that
is made.

Firmware Filter Implementation 155

−1 0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18

Time [ms]

C
ur

re
nt

[m
A

]

Current Consumption with Embedded Estimation Filter

Figure 3.30: Time graph of the current consumption in a third generation MFG node
running the embedded version of the orientation estimation filter and operating as a

master. The dashed line indicates the average consumption over time.

3.4.7 MARG Extension

The MARG filter has not yet been actually implemented in firmware, yet some
considerations are highlighted here.

The main challenge will be in the implementation of the adaptive part of the
filter, the other aspects are mostly covered in the implementation of the MFG
filter. This adaptive part requires the calculation of the average over a certain
window length of the innovation covariance. This moving average can best be
calculated by keeping track of all the matrices in the window and determining
the new average by first subtracting the oldest matrix and then adding the
new one. This way, only two matrix additions need to be executed to calculate
the new average. The resulting measurement and process covariance matrices
can then easily be determined using (2.88) and (2.89).

Although the data package of the MARG nodes could accommodate more
bits of the orientation result, this advantage should not be used. It is much
more interesting to reduce the size of the data packets and construct them
according to figure 3.29. This way, more MARG nodes are capable of trans-
mitting their information to a single base station. Furthermore, no more dis-
tinction will exist between both node types, they can coexist in the same

156 System Design

network and communicate to the same base station.

3.5 Conclusion

In the first section, an overview of all types of hardware has been given. Each
of the designs introduced a new aspect that provided added value compared to
the previous system. Early, first generation test systems carefully scanned the
world of inertial sensing and wireless communication to lay the basics of the
sensor node architecture. In the second generation, these aspects were com-
bined into a fully operational sensor network and the base station architecture
was defined. The third generation introduced lower power consumption and
the possibility to extend the network with more nodes. Finally, the fourth
generation was meant to make the system more unobtrusive using advanced
board and packaging techniques.

A fully plug and play, wireless ad hoc network protocol was introduced
in the following section. Nodes can take the role of a master or a slave in a
TDMA like network scheme where data is short lived and only sent to the base
station. The master acts as a synchronisation beacon for the slaves who time
their transmission relative to the reception of master packages. A dynamic
implementation results when the role of the sensor nodes is determined at
runtime and slaves choose their own timeslot according to its availability.
Slaves also watch the health of the master since its functionality is crucial
for the survival of the network and they take over whenever the master fails.
Additional control mechanisms have been implemented to counter colliding
data transfer. By careful implementation of the protocol, an average current
consumption of less than 3 mA is obtained while a maximum of 19 MFG nodes
are capable of transmitting their data to a single base station.

Finally, the implementation of the orientation tracking filter in firmware
is discussed. The quaternion type extended Kalman filter is chosen due to
the absence of trigonometric functions, the number of operations required for
estimation and the performance determined in chapter 2. A fixed point number
format using eight integer and 24 fractional bits was chosen and multiplica-
tion was implemented using the hardware multiplier. For the square root, an
approximation based on the Newton method was found that offers very fast
calculation of the inverse of the square root. The filter implementation was
realised by making maximal use of the advantages of symmetrical matrices:
only lower triangular parts are calculated and inversion is completed using
Cholesky decomposition. Due to all these simplifications, nodes are capable
of calculating the orientation estimate within the available 10 ms timeframe
while consuming an average current of 6.5 mA.

References 157

References

[1] N. Decraene. Electronics for Movement Analysis in Medical Applications.
Master’s thesis, Ghent University, Ghent, Belgium, 2007.

[2] Kionix Inc., Ithaca, NY, USA. 2g Tri-Axis Accelerometer Specifications,
December 2006. http://www.kionix.com/Product-Specs/KXPS5-2050
%20Specifications%20Rev%204.pdf.

[3] Analog Devices, Norwood, MA, USA. ±75 ◦/s Single Chip Yaw

Rate Gyro with Signal Conditioning, 2004. http://www.analog.com/en/
mems-sensors/gyroscopes/adxrs401/products/product.html.

[4] Invensense. IDG-300, Integrated Dual-Axis Gyro, August 2007. http://
invensense.com/mems/gyro/documents/PS-IDG-0300B-00-03.pdf.

[5] Honeywell, Plymouth, MN, USA. Digital Compass Solution HMC6352,
January 2006. www51.honeywell.com/aero/common/documents/
myaerospacecatalog-documents/Missiles-Munitions/HMC6352.pdf.

[6] Invensense. ITG-3200, Product Specification, March 2010. http://
invensense.com/mems/gyro/documents/PS-ITG-3200-00-01.4.pdf.

[7] Texas Instruments. MSP430F149, 16-bit Ultra-Low-Power Microcon-

troller, June 2004. http://focus.ti.com/general/docs/lit/getliterature.tsp?
genericPartNumber=msp430f149&fileType=pdf.

[8] Nordic Semiconductor. nRF2401, Single chip 2.4 GHz Transceiver, June
2004. http://www.nordicsemi.no/files/Product/data_sheet/nRF2401rev1_
1.pdf.

[9] B. Kuyken and W. Verstichel. Realisation of a Headbanging Orchestra

using Movement Sensors and Wireless Links. Master’s thesis, Ghent
University, Ghent, Belgium, 2008.

[10] B. Kuyken, W. Verstichel, F. Bossuyt, J. Vanfleteren, M. Demey, and
M. Leman. The HOP sensor: Wireless Motion Sensor. In Proceedings of
the International Conference on New Interfaces for Musical Expression,
Genova, Italy, 2008.

[11] W. Christiaens, B. Vandevelde, and J. Vanfleteren. Ultra-Thin Chip Pack-

age (UTCP) for Flexible Electronics Applications. In Proceedings of the
IMAPS Nordic Conference, pages 7–11, Gothenburg, Sweden, September
2006.

http://www.kionix.com/Product-Specs/KXPS5-2050%20Specifications%20Rev%204.pdf
http://www.kionix.com/Product-Specs/KXPS5-2050%20Specifications%20Rev%204.pdf
http://www.analog.com/en/mems-sensors/gyroscopes/adxrs401/products/product.html
http://www.analog.com/en/mems-sensors/gyroscopes/adxrs401/products/product.html
http://invensense.com/mems/gyro/documents/PS-IDG-0300B-00-03.pdf
http://invensense.com/mems/gyro/documents/PS-IDG-0300B-00-03.pdf
www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/HMC6352.pdf
www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/HMC6352.pdf
http://invensense.com/mems/gyro/documents/PS-ITG-3200-00-01.4.pdf
http://invensense.com/mems/gyro/documents/PS-ITG-3200-00-01.4.pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=msp430f149&fileType=pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=msp430f149&fileType=pdf
http://www.nordicsemi.no/files/Product/data_sheet/nRF2401rev1_1.pdf
http://www.nordicsemi.no/files/Product/data_sheet/nRF2401rev1_1.pdf

158 References

[12] E.P. Hanavan. A Mathematical Model of the Human Body. Techni-
cal Report TR-64-102, Aerospace Medical Research Laboratory, Wright-
Patterson Air Force Base, OH, USA, 1964.

[13] USB.org, Universal Serial Bus. http://www.usb.org/.

[14] Digital Equipment, Intel, and Xerox. The Ethernet, A Local Area Network,

Data Link Layer and Physical Layer Specifications, September 1980.

[15] Wi-Fi Alliance. http://www.wi-fi.org/.

[16] Bluetooth.org, Official Bluetooth Info Site. http://www.bluetooth.com/
English/Pages/default.aspx.

[17] Artaflex, Markham, Ontario, Canada. 2.4 GHz DSSS Radio Module with

Integrated Power Amplifier, October 2008. http://artaflexmodules.com/
sites/default/files2/DataSheet%20AWA24S.pdf.

[18] Varta. LPP423566, Rechargeable Lithium Polymer, September
2008. http://www.varta-microbattery.com/en/oempages/product_data/
poductdata_types.php?output=typedata&segment=RechLiFlatPoly.

[19] ST Microelectronics. LIS3LV02DQ, 3-Axis - ±2g/±6g Digital Output

Low Voltage Linear Accelerometer, October 2005. http://www.st.com/
internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
DATASHEET/CD00047926.pdf.

[20] Yamaha. YAS529, Magnetic Field Sensor, June 2006. http://www.yamaha.
co.jp/english/product/lsi/prod/pdf/sensor/BAS529A20.pdf.

[21] Atmel. ATMega168, 8-bit AVR Microcontroller with 8K Bytes In-

System Programmable Flash, September 2007. http://www.atmel.com/
dyn/resources/prod_documents/doc2545.pdf.

[22] Cypress. CYRF6936, WirelessUSB LP 2.4 GHz Radio SoC, April 2007.
http://www.cypress.com/?docID=17202.

[23] Silicon Laboratories. CP2102, Single-Chip USB to UART

Bridge, October 2004. http://www.silabs.com/pages/DownloadDoc.
aspx?FILEURL=Support%20Documents/TechnicalDocs/cp2102.pdf&
src=DocumentationWebPart.

[24] Microchip. ENC28J60, Stand-Alone Ethernet Controller with SPI Inter-

face, January 2008. http://ww1.microchip.com/downloads/en/DeviceDoc/
39662c.pdf.

http://www.usb.org/
http://www.wi-fi.org/
http://www.bluetooth.com/English/Pages/default.aspx
http://www.bluetooth.com/English/Pages/default.aspx
http://artaflexmodules.com/sites/default/files2/DataSheet%20AWA24S.pdf
http://artaflexmodules.com/sites/default/files2/DataSheet%20AWA24S.pdf
http://www.varta-microbattery.com/en/oempages/product_data/poductdata_types.php?output=typedata&segment=RechLiFlatPoly
http://www.varta-microbattery.com/en/oempages/product_data/poductdata_types.php?output=typedata&segment=RechLiFlatPoly
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00047926.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00047926.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00047926.pdf
http://www.yamaha.co.jp/english/product/lsi/prod/pdf/sensor/BAS529A20.pdf
http://www.yamaha.co.jp/english/product/lsi/prod/pdf/sensor/BAS529A20.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf
http://www.cypress.com/?docID=17202
http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Documents/TechnicalDocs/cp2102.pdf&src=DocumentationWebPart
http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Documents/TechnicalDocs/cp2102.pdf&src=DocumentationWebPart
http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Documents/TechnicalDocs/cp2102.pdf&src=DocumentationWebPart
http://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf

References 159

[25] ST Microelectronics. LIS302DL, 3-Axis - ±2g/±8g Smart Digital Out-

put Piccolo Accelerometer, October 2008. http://www.st.com/stonline/
products/literature/ds/12726.pdf.

[26] Texas Instruments. MSP430f249, 16-bit Ultra-Low-Power Microcon-

troller, April 2009. http://focus.ti.com/general/docs/lit/getliterature.tsp?
genericPartNumber=msp430f249&fileType=pdf.

[27] R. Rojas and U. Hashagen. The First Computers: History and Architec-

tures. MIT Press, 2000.

[28] B. Vanhoutte. Design and Implementation of a Wireless Communication

Protocol for Sensor Networks. Master’s thesis, Ghent University, Ghent,
Belgium, 2010.

[29] Future Technology Devices International. FT232R, USB UART IC, Jan-
uary 2006. http://www.ftdichip.com/Support/Documents/DataSheets/ICs/
DS_FT232R.pdf.

[30] Roving Networks. RN-41: Class 1 Bluetooth Module. Los Gatos, CA,
USA, August 2009. http://www.rovingnetworks.com/documents/RN-41.
pdf.

[31] Texas Instruments. MSP430F2132, 16-bit Ultra-Low-Power Microcon-

troller, April 2009. http://focus.ti.com/general/docs/lit/getliterature.tsp?
genericPartNumber=msp430f2132&fileType=pdf.

[32] W. Christiaens. Active and Passive Component Integration in Polyimide

Interconnection Substrates. PhD thesis, CMST, Elis Department, Ghent
University, November 2008.

[33] Logitech. PM5 Auto Precision Lapping and Polishing Machine. http://
www.logitech.uk.com/pm5autolap.asp.

[34] Nordic Semiconductor. nRF24L01, Single chip 2.4 GHz Transceiver, July
2007. http://www.nordicsemi.com/eng/content/download/2730/34105/file/
nRF24L01_Product_Specification_v2_0.pdf.

[35] R. Zhu and Z. Zhou. A Real-Time Articulated Human Motion Tracking

using Tri-Axis Inertial/Magnetic Sensors Package. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 12(2):295–302, June
2004.

[36] R. Rom and M. Sidi. Multiple Access Protocols: Performance and Anal-

ysis. Springer-Verlag, 1990.

[37] J.F. Wakerly. Digital Design Principles & Practices. Prentice Hall, 2000.

http://www.st.com/stonline/products/literature/ds/12726.pdf
http://www.st.com/stonline/products/literature/ds/12726.pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=msp430f249&fileType=pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=msp430f249&fileType=pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.rovingnetworks.com/documents/RN-41.pdf
http://www.rovingnetworks.com/documents/RN-41.pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=msp430f2132&fileType=pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=msp430f2132&fileType=pdf
http://www.logitech.uk.com/pm5autolap.asp
http://www.logitech.uk.com/pm5autolap.asp
http://www.nordicsemi.com/eng/content/download/2730/34105/file/nRF24L01_Product_Specification_v2_0.pdf
http://www.nordicsemi.com/eng/content/download/2730/34105/file/nRF24L01_Product_Specification_v2_0.pdf

160 References

[38] XSens Technologies. MTw 3DOF Orientation Tracker. http://www.xsens.
com/images/stories/products/PDF_Brochures/mtwleaflet.pdf.

[39] A. D. Young, M. J. Ling, and D. K. Arvind. Orient-2: a Realtime Wireless

Posture Tracking System using Local Orientation Estimation. In Pro-
ceedings of the 4th Workshop on Embedded Networked Sensors, pages
53–57, Cork, Ireland, 2007.

[40] IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008,
August 2008.

[41] K. Turkowski. Fixed Point Square Root. Technical Report 96, Apple,
1994.

[42] id Software. http://www.quake.com/.

[43] C.T. Kelley. Solving Nonlinear Equations with Newton’s Method. Siam,
2003.

[44] C. Lomont. Fast Inverse Square Root. Technical report, Department of
Mathematics, Purdue University, West Lafayette, Indiana, USA, 2003.

[45] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins,
1996.

[46] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Steward. LINPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia,
1979.

http://www.xsens.com/images/stories/products/PDF_Brochures/mtw leaflet.pdf
http://www.xsens.com/images/stories/products/PDF_Brochures/mtw leaflet.pdf
http://www.quake.com/

4
Software

This chapter contains a description of the key features that are implemented
in the computer software that allows data processing of the sensor signals.
The emphasis lies with the visualisation as this is the most important task to
be fulfilled.

4.1 Introduction

The software that has been developed throughout the years found its origin in
the work conducted by ir. Niels Decraene in the scope of his master thesis [1].
The initial applications allowed to receive data from one of the first generation
systems and visualise it on the screen. A first attempt for orientation tracking
was already implemented by simple integration of the gyroscope signals and
periodic correction using the accelerometer output. Naturally, the orientation
drifted due to noise and the heading was never corrected as the accelerom-
eter does not supply any information about this angle. However, as the first
generation system was readily available for initial testing, the software was
also adopted as a starting point.

The original code was written in Visual Basic (VB) version 6.0 [2]. Since
the main stream support for this programming language ended in March 2005,
the first task was to transfer the code to a newer language. Finally, the
.NET version of VB [3] was chosen as it is closely related and would require
the least amount of modifications. The language is also part of Microsoft’s
.NET framework which consists of a large library that can be used by any

162 Software

of the supported languages and a Common Language Runtime (CLR) that
provides services as security, memory management and exception handling [4].
Programs can even be compiled from source files written in different languages,
as long as they are part of the framework. Another advantage of migrating to
the framework is found in the fact that a free implementation is available in
the form of Microsoft Visual Studio Express [5].

Gradually, the program has been expanded with new features starting
with graphs for visualisation of sensor data and ending with a stickman for
full body posture tracking. With the parallel developments in the hardware
of the system, the program also gained support for all different generations of
systems, although the support for the first generation systems has now been
abandoned since none of these devices offered full three dimensional driftless
tracking.

4.2 Application Overview

In this section, an overview of the entire software application is given. First,
the general structure of the software is outlined and each of the windows
that form the Graphical User Interface (GUI) of the application are described.
Then, the data flow through the software is shown and the appropriate classes
are highlighted.

4.2.1 Software Structure

The software GUI consists of several windows that are linked to each other. At
startup, the Welcome window is the first to be displayed and prompt the user
for input. Then, depending on the choices made by the user, a Device window
is loaded which allows to visualise sensor data and orientation. Once this is
active, a Calibration window may be started in case a calibration needs to be
executed. When shutting down the software, the order of appearing windows
is reversed.

4.2.1.1 Welcome Window

The welcome window is shown by default when the application is started. As
can be seen in figure 4.1, it allows the user to select which tracking system
is currently in use followed by the choice of which device window to run. The
buttons are only activated when that specific device window is available for
the selected system.

Application Overview 163

Figure 4.1: Screen capture of the welcome window.

4.2.1.2 Device Window

There are six device windows each supporting a different set of sensors. Three
of them support a single three dimensional sensor, either an accelerometer,
a gyroscope or a magnetometer. Two support a combination of two sensors,
the MFG combines acceleration and magnetic field measurements and the
Inertial Measurment Unit (IMU) is based on an accelerometer and gyroscope
combination. Finally, the MARG device window supports the combination of
all three sensors.

The device windows are the actual work horses of the application as they
implement the main functionality of the software. Before starting however,
several radiobuttons, textboxes and checkboxes need to be set up. The com-
munication interface with the receiver can be set to either a serial port or User
Datagram Protocol (UDP) packages and all of the parameters associated with
it can be adjusted. The type of sensor node output is selected to be either sen-
sor output data or orientation from the embedded filter implementation. The
digital pre-filter for sensor data can be activated or deactivated and all of the
coefficients can be adjusted using a dialog window. All of the filters described
in chapter 2 can be used to perform orientation tracking using either Euler
angle or quaternion representation. Moreover, all of the parameters used by
the tracking filters can be adjusted using textbox entries. Finally, checkboxes
allow the user to have the application write data to log files.

The windows support four types of visualisation placed in different tabs.

164 Software

The first tab contains graphs where sensor output data can be visualised. The
second features a beam drawn using Open Graphics Library (OpenGL) [6] that
visualises the orientation and several graphs for both the sensor data and the
orientation. The orientation of up to six nodes can be visualised by individual
beams in the third tab. Finally, full body posture can be shown in the last tab
by means of a stickman. On each tab, the ID numbers of the operating nodes
can be entered in textboxes.

4.2.1.3 Calibration Window

A calibration window can be started by selecting the sensors to calibrate in
the device window and clicking the calibrate button. The type of calibration
window depends on which sensors were selected for calibration. Figure 4.2
shows the calibration window for both the accelerometer and the magnetome-
ter.

Figure 4.2: Screen capture of the calibration window.

First, the ID of the sensor node in use must be entered. Also, the number of
measures that will be averaged to obtain a valid output value can be adjusted,
although the standard value of 100 samples should suffice. Then, by pressing
the start button, samples are acquired from the sensor node and it may be
positioned in any of the required standard orientations as defined by the
calibration procedure described in section 2.4.2.2. Once the positioning is
complete and the sensor node is steady, a measurement is initiated by pressing
the appropriate button on the right hand side of the window. Upon completion,
the average measurements are displayed in the textboxes. After completing the
procedure for all six positions, the sensor readout can be stopped and the bias
and gain values can be calculated. Finally, the newly acquired calibration

Application Overview 165

result can be saved to a text file. The application will then automatically
load the available calibration values when the same sensor nodes is used for
tracking.

4.2.2 Data Flow

The data flow through the software is displayed in figure 4.3. The origin of
the data is the base station that is connected to the computer which receives
the sensor data wirelessly. It then propagates through the program passing
several classes until it reaches its final goal which can be one of the many
visualisations implemented in the software.

In this section, the data flow of normal sensor data is described. For the
case where the embedded estimation filter is running on the nodes, small
adjustments need to be made that even simplify the flow as conversion to
orientation is no longer needed.

4.2.2.1 Data Collection

Data can be received from the base station using either a UDP socket or a
COM port object.

UDP Socket

When the base station is connected to the computer via Ethernet [7, 8], it will
transmit the data in UDP type packages which must then be unpacked [9]. This
task is executed by a piece of code that represents the UDP socket and which
determines if a package conforms to the given protocol, checks if the Internet
Protocol (IP) address [10] is correct and if the port number corresponds. If all
of the conditions are met, the package payload is unwrapped and handed to
the network class in the form of a byte array.

COM Port

When either a UART to USB interface [11–13] or Bluetooth [14, 15] are used
for data transfer, packages are received via a serial port [16]. In both cases,
this serial port is actually a virtual COM port mounted in software by a driver.
This way, existing software objects that were frequently used in the past for
data communication using the serial port can be recycled. These objects are
capable of translating the received signals into byte arrays when the baudrate
and number of control bits are known.

166 Software

Base Station

Receive

UDP Socket COM Port

Receive

Graph Orientation

Kalman Class

State update

StickmanGraph Beam

Network Class

Parse
Byte Array

Calibrated DataRaw Data

Node Class

Calibrate
Filter

Serial BitstreamEthernet Package

Byte Array

Raw Sensor Data

Calibrated Sensor Data

Orientation

Figure 4.3: Software data flow diagram.

4.2.2.2 Network Class

The network class is responsible for managing all of the data packages re-
ceived from a base station. All of these packets will conform to the form

Application Overview 167

described in section 3.3.2 and displayed in figure 3.18. Optionally, the re-
ceived byte array can first be written to a log file. Then, the data is unpacked
10 bytes at a time and parsed to floating point numbers representing the raw
output values from the sensors of a single node. Depending on the ID number,
this raw data is subsequently passed on to the corresponding node class ob-
ject. If no object exists with the encountered ID number, the data is discarded.
The procedure is naturally repeated a number of times equal to the number
of RF packages that have been received by the base station in the present
timeframe.

4.2.2.3 Node Class

There are as many node class objects as there are nodes whose data should
be visualised. Each individual object will validate the data corresponding to
its assigned ID number. Before any operations are performed on the raw data,
it can optionally be written to a log file. In this case, multiple log files will
exist as each node object will create its own. Then, processing of the raw data
starts by applying the calibration constants which are recovered from a file
when the node object is created. Afterwards, the data is filtered by an object
of the digital filter class which implements the pre-filter designed in chapter
2. At this point, the newly acquired data can again optionally be written to a
log file, before being transferred to either a graph object or a Kalman filter.

4.2.2.4 Kalman Filter Class

Each node object has an associated Kalman filter class object that performs
estimation of the orientation. It requires the calibrated sensor output to per-
form an update of the internal state which can be either a set of Euler angles
or a quaternion. Optionally, this state can be written to a log file for future
reference. Also, an optional post-filter can be applied to the orientation at
this point.

4.2.2.5 Visualisation

The final destination of the data is some kind of visualisation. Three types
exist: a graph, a beam or a stickman. Note that although the data arrives
at a rate of 100 Hz, the visualisation is updated at a slower rate of 25 Hz to
reduce the workload on the computer.

The beam and stickman class are drawn using OpenGL [6], which is an
Application Programming Interface (API) for 2D and 3D graphics. It includes
many functions for rendering, texture mapping and special effects for all pop-
ular platforms. The functions are made available for the .NET programming

168 Software

languages through the TAO framework [17], which is a library that allows ac-
cess to many graphics libraries including OpenGL. As a base, the visual class
is defined as an extension of a TAO included class called SimpleOpenGLCon-

trol. This newly defined class supports general functions as mouse controlled
rotation of the drawn objects and resizing of the window.

Graph Class

The graph class extends the .NET picturebox class and accepts data in numeric
form. With each update, a line is drawn between the previous sample and the
current to form a piecewise linear graph. Multiple data entries are drawn
using different line colors.

Beam Class

Either Euler angles or quaternion orientation can be loaded into the beam
class. A refresh of the visual causes the OpenGL frame to be rotated according
to the given orientation and a multicolored beam to be drawn. The result is
an on screen beam that positions itself in realtime according to the sensor
node’s orientation.

Stickman Class

The stickman class features several bone class objects that are connected to
each other when drawn. The orientation of each of these bones corresponds
to the output of a Kalman filter associated to a node active in the network.
Although in general 15 bones are required for a realistic human approximation
[18], hands and feet are omitted to form a stickman consisting of only 11 parts:
two for each arm and leg, one for the head and two for the torso. When an
update is performed, a human correction model is applied and the stickman is
drawn recursively starting at a root. More details on the human model that is
used to correct impossible postures is given in the next section.

4.3 Human Model

When the orientation output of sensor nodes is mapped directly to a stickman
figure, chances are that the posture of the stickman is in general impossible for
any human to take on. The reason for this lies in the errors that are present
in the orientation output and originate from slight calibration mismatches to
the influence of motion disturbance on the sensor readings. In an attempt to
correct these anatomically incorrect postures to more feasible ones, a human
model is included in the software.

Human Model 169

The basics of the human model has been laid out by two students, ir. Wim
Mistiaen and ir. Sander Van Schoote, in the scope of their master thesis [19].
The thesis was the result of a cooperation between CMST and Multimedialab
and also contained a part about high level recognition of certain actions or
gestures from the output sequences of the orientation tracking filter. While
this second part is not outlined here as it is beyond the scope of this work,
the first part consisting of the human model is of major importance. Therefore
several improvements have been added to the model since the initial version
which will be discussed in this section.

This section starts with a description of how the stickman figure is animated
at each iteration and how the corrections are performed in general. Then an
overview is given of the offsets that must be applied to the bone orientations
in order to correct errors due to misplacement of the sensor nodes on the
body of the test subject. Subsequently, the procedure for correcting the bone
orientation according to the human model is outlined. Finally, a floor is added
to the visualisation, allowing the stickfigure to move around in the virtual
world.

4.3.1 Stickman Build-up

The stickman figure naturally consists of several bones that are interconnected
by joints [20]. Since the endpoint of a bone is mostly the starting point of one
or more other bones, the drawing and updating process will be implemented
in a recursive way. Therefore, bones are arranged in a tree structure where
each bone is assigned a parent whose endpoint equals the startpoint of the
considered bone and possibly multiple children whose startpoint is connected
to its endpoint. In general, a tree always starts with a root which can be either
an object itself or a dummy version that is not displayed and only serves as
an anchorpoint [21]. The tree of bones that is used for drawing the stickman
is displayed in figure 4.4. In this case, the root is a dummy bone that is not
drawn and is located between the upper and lower torso. Aside from the root,
15 bones are modeled, although only 11 of them are assumed to be equipped
with sensor nodes. The shoulder and hip bones will be attached to the torso
when drawn.

Each time the stickman is rendered, the calculated orientations of the
sensor nodes are first assigned to their respective bones. Then the orientation
is corrected recursively in the order defined by the tree structure and according
to a defined set of correction rules. However, these rules can only be defined
when the subset of anatomically correct orientations is known, which in turn
entirely depends on the type of link that exists between the parent and the
considered bone as it is assumed that the bones can be approximated by rigid
bodies. Therefore, some sort of parameterisation of realistic human joint limits

170 Software

Right Hip

Right Upper
Leg

Right Lower
Leg

Left Hip

Left Upper
Leg

Left Lower
Leg

Root

Upper Torso

Lower Torso

Right Shoulder

Right Upper
Arm

Right Lower
Arm

Left Shoulder

Left Upper
Arm

Left Lower
Arm

Head

Figure 4.4: Stickman bones tree structure.

needs to be chosen that allows a definition of the feasible range of motion.
A commonly used method is to describe the orientation using the swing-twist

formalism that partitions an arbitrary orientation into two components [22].
The first component is called the swing and corresponds to the spherical
motion where the bone is pointed in any arbitrary direction. The second
component is an axial rotation around this final direction, also called the
twist. The anatomical limits that are imposed by the presented model will
bound both of these components separately. Although both components are

Human Model 171

in fact coupled to some extend [23], this way of working allows to define
restrictions in an intuitive way with sufficient precision [24].

Since the model limits are defined using the swing-twist formalism, the
orientation of the bone must be represented using this format. With Euler
angles, the formalism can easily be obtained when the twist corresponds to
the angle of the final rotation. However, care must be taken when using
this type of conversion as the zero twist must in this case be well defined,
otherwise, induced twist can easily occur [25]. For the quaternion case, a
decomposition must be used where a single quaternion is split into a swing
and twist component. This can be realised using the fact that the twist axis is
in fact known and the swing axis is perpendicular to it. Appendix A describes
this decomposition mathematically.

4.3.2 Bone Offset

Under normal circumstances, the software expects that a neutral orientation
corresponds to the test person standing up straight and facing the north di-
rection. However, when a sensor node is applied to a part of the human
body, small misalignment errors between the sensor node and the limbs are
inevitable. Tilt errors arise from the fact that the body is not flat and clothes
are worn underneath the nodes. However, an offset is also generated by a
person not exactly facing the North direction, which is mostly hard to avoid.
Furthermore, this heading error can also differ between body parts since it is
possible that not all nodes are facing the same direction when the reference
position is assumed. Both of these offsets, tilt and heading, are bound to
a different reference frame. The facing offset must be corrected in the earth
bound reference frame and the misplacement of the nodes must be corrected
in the sensor frame. This must be taken into account when determining the
offsets.

Figure 4.5 shows a screen capture of the stickman visualisation before and
after offset correction. It is clear that the original stickman is facing away from
the screen and has limbs with tilt errors due to misalignment of the sensor
nodes and roundness of the human body. The offsets correct this nicely to a
stickman standing up straight with arms beside the body.

4.3.2.1 Euler Angles

Since the heading is the first rotation to be applied according to the roll-pitch-
yaw convention introduced in section 2.2.1, this correction is automatically
realised in the earth bound frame. The person should thus simply assume the
reference position which, for each bone, will result in a certain set of Euler
angles (φr , θr , ψr) that generally does not correspond to the neutral position

172 Software

Figure 4.5: Screen capture of the stickman before (left) and after (right) offset
corrections are applied.

given by (0, 0, 0). Since the visualisation expects that the first set of angles
should actually equal the latter when the reference position is adopted, the
offsets can be set equal to the negative of (φr , θr , ψr). From then on, all
output angles can be validated by adding the offsets to the output of the filter.

4.3.2.2 Quaternion

In the quaternion case, finding the offsets is more complex given the fact
that the correction is performed by multiplication and the final orientation is
obtained through a single rotation. When a certain quaternion qr is found to
be the output of the filter when the reference position is assumed, it needs
to be corrected to the neutral orientation given by a unit scalar part and a
zero vector part. Since the heading error is corrected in the earth bound
frame and the tilt error in the sensor bound frame, the correction is performed
by right multiplication of the quaternion with a heading correction and left
multiplication with a tilt correction:

qtilt ⊗ qr ⊗ qheading = 1, (4.1)

The reference output quaternion qr should now be decomposed as follows
to solve (4.1):

Human Model 173

qr = q−1
tilt ⊗ q−1

heading = q∗tilt ⊗ q∗heading, (4.2)

where the fact is used that the inverse of a unit quaternion equals its
conjugate. Note that this decomposition can be accomplished by using the
swing-twist decomposition [25] since the heading quaternion fulfills the role
of a twist component corresponding to a rotation around the Z-axis and the
tilt quaternion can be seen as a swing component with a rotation around an
axis in the XY-plane. The mathematical derivation of this decomposition is
given in the appendix section A.2. Application of (A.13) yields for the heading
quaternion:

wheading =
±wr

√

w2
r + z2

r

(4.3a)

zheading =
∓ zr

√

w2
r + z2

r

(4.3b)

Where the duality in sign clearly reflects the fact that both a unit quater-
nion and its negative represent the same rotation. Note that contrast to (A.13),
the signs of both coefficients must be different, reflecting the inversion present
in (4.2). Also note that a singularity is present when both wr and zr equal zero,
which must be taken into account when using the above equations. However,
this situation occurs when qr corresponds to a 180◦ rotation around an axis
in the XY-plane which in turn means that the test person is standing upside
down. Given the chosen reference stance, it is clear that the singularity is
highly unlikely to occur.

The tilt quaternion can be found by rearranging terms in (4.2):

qtilt = q∗heading ⊗ q∗r (4.4)

Finally, quaternion orientations coming from the estimation filter can be
validated by applying:

qtilt ⊗ qraw ⊗ qheading = qcorrected. (4.5)

4.3.3 Bone Corrections

At this point in the posture update, all bone orientations are converted to
quaternion representation. The reason lies in the choice of correction method
that is applied where the direction of the bone is corrected independently from
the torsion. If Euler angles were used, this torsion would have to be applied
as the final rotation, which would complicate the process model equations of
the Kalman filter as gravity is also parallel to this initial torsion axis and the

174 Software

rotation around gravity should in fact be applied first. Otherwise, all three
angles appear in the equation while the accelerometer readings should only
control two of them given the fact that rotations around gravity cannot be
detected.

The corrections that a bone undergoes depend on the constraints that the
bone is subjected to. There are in fact four categories: free bones which
remain uncorrected, fixed bones that follow their parent’s orientation, single
plane constraint bones whose connection to the parent is modeled by a hinge
joint and multiple plane constraint bones that are connected through a ball-
and-socket joint.

Although the idea of limiting swing and twist separately and the applied
classification of bones is widely used, the actual correction strategies pre-
sented in this section are mainly new.

4.3.3.1 Free Bones

Free bones have no restrictions on the orientation they adopt. When all bones
are designated as free bones, no restrictions apply and each individual bone
simply copies the orientation of the sensor node associated with it. This way,
an unconstrained stickman is built.

In the human model presented here, only the root bone is left uncorrected.
As this bone defines the overall stance of the stickman, it should be defined
free to allow any possible position in general. Note that this way of working
inherently means that errors in the orientation of the root are automatically
included in the stickman posture. This can only be adjusted by changing the
build-up of the stickman and correcting all of the bones together to a generally
more feasible position instead of relying on recursive correction.

4.3.3.2 Fixed Bones

The orientation a fixed bone takes on is copied from its parent bone. In general,
these bones have no sensor node assigned to them because their movement
is not included in the used human model. Although more elaborate human
models might require a lot more bones to construct a better approximation of
the human body, some of these bones can just be assigned to be fixed bones
if less sensor nodes are available.

Both shoulder and hip bones are defined as fixed bones in the model. The
shoulder bones take over the orientation of the upper torso, while the hips
follow the lower torso. The lower torso itself is also defined as a fixed bone.
Strictly speaking, a sensor node is assigned to this bone, yet the orientation
from this sensor node is actually assigned to the root and is then transferred
to the lower torso by defining it as a fixed bone.

Human Model 175

4.3.3.3 Single Plane Constraint Bones

Bones that are categorised as single plane constraint bones are connected to
their parent via a hinge type joint. These types of joints only allow a single
DOF in rotation around a well known axis. As can be seen in figure 4.6,
valid orientations of these bones are only found in the plane that contains the
parent and is perpendicular to the hinge axis. Furthermore, the angle between
the parent and the bone, here denoted as γ, is also restricted to the range
[γmin, γmax]. In the human body, the anatomical restrictions on both the knee
and elbow joints comply with this type of model. Hence, both the lower legs
and arms are classified as single plane constraint bones. Note that for both of
these joints, a range of approximately 180◦ is valid, stretching from γmin = 0◦

to γmax = 180◦. This transforms the valid plane into a half-plane.

Parent

Single Plane Constraint Bone

Hinge Axis

Possible Directions

γmax

γmin

γ

Figure 4.6: Single plane constraint visualisation.

As outlined in section 4.3.1, the correction is performed separately for
swing and twist. The swing correction will attempt to place the bone inside

176 Software

the allowed plane, while the twist correction simply restricts the axial rotation
of the limb. Since the lower arm consists of two bones, the radius and ulna
[26], which are connected in a pivot joint at the wrist allowing a person to turn
his or her hand to face different directions, a certain amount of twist is allowed
for this bone. In the lower legs, the knee allows slight rotations around the
axial direction. Hence, although the joints are modeled as hinges, the twist
will actually model the joints with two DOF.

Swing Correction

When the orientation of the corresponding sensor node is assigned to a single
plane constraint bone, the swing component will generally not place the bone
in the required half-plane. A correction method is needed to change this
faulty direction to a valid one. Although strictly speaking, a hinge joint would
indicate that the bone is part of the plane as defined in figure 4.6, a certain
amount of tolerance will be allowed in order to make the correction smoother.
This tolerance translates in the fact that the corrected bone may be part of
any half-plane located in a wedge around the initially defined half-plane
containing the possible directions according to the hinge. The tolerance is
therefore defined as the angle between the half-plane perpendicular to the
hinge axis and the most extreme members of the wedge. It will further be
denoted as δ and is chosen to be 20◦.

Figure 4.7 displays the correction of a bone when the swing component
does not place it in one of the half-planes of the defined wedge. The direc-
tion of the parent dp, the associated hinge axis ah and the direction of the
corresponding sensor node ds form the inputs of the correction method. The
corrected direction dc is then calculated by projecting it on a correction plane
with normal vector nc according to the following procedure:

1. Calculate the sensor axis as perpendicular to both the parent direction
dp and the sensor node direction ds:

as = dp × ds (4.6)

2. If the angle αs between as and ah is smaller than δ , the sensor node
direction ds lies within one of the half-planes of the wedge and the
corrected direction dc is found to be simply ds. In this case the procedure
ends, otherwise, more steps are required.

3. The normal of the correction plane nc can now easily be determined by
remarking that the hinge axis ah is in fact the normal to the theoretical
plane that should contain the bone according to the hinge. However,
given the fact that some tolerance will be incorporated, ah will be rotated

Human Model 177

dp

ds

dc

ah
as nc

αc
αs

β

Figure 4.7: Single plane constraint correction.

towards as around dp and over a correction angle αc to find the normal
to the correction plane nc . In order to ensure a smooth correction, αc
will also depend on the actual error angle αs between as and ah:

αc = δ + (αs − δ) ε, (4.7)

where ε represents the fraction of the error angle αs that is added to
the correction angle αc . This parameter is referred to as the elasticity

and equals 0.2.

4. The sensor direction ds can now be projected onto the correction plane
to yield the corrected direction dc:

dc = ds − (ds · nc) nc (4.8)

This direction can finally be normalised if desired.

5. In the case that the angle between the sensor axis as and the correction
plane normal nc is larger than 90◦, projecting the sensor direction ds

178 Software

onto the correction plane results in a direction located in the wrong
half-plane. The resulting γ angle will in this case not be located in
the bounds that were put forward and the visualisation will show an
overstretched elbow or knee. This case occurs whenever the following
inequality holds:

αs − αc > 90◦ (4.9)

Substituting the expression for αc from (4.7) and solving for αs yields:

αs >
90◦ + δ (1 − ε)

1 − ε
= 132.5◦ (4.10)

Hence a large orientation error should be present to trigger such a
wrongful projection. The corrected bone direction dc will in this case
either be set to dp when the angle β between dp and ds is smaller than
90◦, or −dp otherwise.

Figure 4.8 shows a screen capture of the stickman before and after swing
corrections are applied. The upper right arm and leg are drawn in the stan-
dard upright position and are facing forward. In this case, the orientations
visualised on the left are anatomically impossible. The errors are corrected
and shown on the right giving a posture that is much more feasible. Note that
corrected bones are drawn in green for visual feedback. Also, the constraints
are visualised by drawing the hinge axis ah in turquoise and the correction
plane normal nc in purple. For the knees, the hinge axis is located in the
plane of the stickman figure, while for the elbows, it forms an angle of 30◦

with this plane since a person in the reference stance also shows an outward
rotation of the elbows.

Twist Correction

After the swing correction has been executed, the twist still needs to be val-
idated. However, the boundaries of the twist also depend on the twist of the
parent bone, much as the direction of the hinge axis also depends on the
swing of the parent. Furthermore, in order to assure smooth visualisation,
the elasticity factor ε is also used here. The following procedure is finally
obtained:

1. Calculate the difference in twist between the parent and the bone un-
der consideration. If the absolute value of this difference exceeds the
twist bound, the twist must be corrected, otherwise no adjustments are
required and the procedure ends.

Human Model 179

Figure 4.8: Screen capture of the stickman before (left) and after (right) corrections
to the swing of the lower right arm and leg have been applied.

2. Denoting the corrected twist angle by τc , the parent twist angle by τp,
the original twist angle by τs and the twist bound by τb, the following
formulas are applied to correct the twist angle:

τc =

{

τp − τb + ε
(

τs − τp + τb
)

: τs < τp

τp + τb + ε
(

τs − τp − τb
)

: τs > τp
(4.11)

The twist angle is corrected by starting from the parent’s twist and
moving towards the original twist angle over the bound value and a
fraction of the twist error.

Since none of the single plane constraint bones have any child bones
associated to them and the visualisation of the bones is circular symmetric
in the axial direction, this correction is barely visible. Therefore, the feet of
the stickman have been drawn in such a way that they are no longer circular
symmetric and clearly show the twist on the lower leg bones. Figure 4.9
shows the stickman before and after twist correction on the lower right leg.
On the left, the foot is clearly pointing backwards, which is a very unnatural
pose. By limiting the axial rotation as described by (4.11), the foot assumes
an anatomically correct direction. Note that when the twist is corrected, the

180 Software

end joint of the bone is drawn in green to offer clear visual indication of the
correction. For the knees, the torsion bound is chosen to be 20◦, while the
elbows have a more liberal 90◦ limit given the higher amount of axial rotation
allowed by the wrist.

Figure 4.9: Screen capture of the stickman before (left) and after (right) corrections
to the twist of the lower right leg have been applied.

4.3.3.4 Multiple Plane Constraint Bones

The multiple plane constraint bones are connected to their parent through a
ball-and-socket type joint. Therefore, the child bone is capable of rotation
around an infinite number of axes who have a common center in the middle
of the ball and the joint exhibits three DOF. However, not all orientations
are feasible as the joint also restricts the movement. The directions that are
anatomically impossible are therefore modeled by a cone, as can also be seen
in figure 4.10. This cone is characterised by its center axis direction and the
angle at the top. Given the fact that the joints have three DOF, they also
allow a certain amount of twist. This twist must however also be bound as
was the case for the single plane constraint bones.

In this human model, both the upper arms and legs, as well as the upper
torso and the neck with the head are categorised as multiple plane constraint
bones. The hips and shoulders clearly conform to the ball-and-socket joint

Human Model 181

Parent

Multiple Plane Constraint Bone

Forbidden Cone

ω

Cone Direction

α

Figure 4.10: Multiple plane constraint visualisation.

definition. The neck joint and the joint between the upper and lower torso
are in fact more complex as they depend on joints in the vertebral column, but
they can both be approximated by the model presented here.

Swing Correction

Figure 4.11 shows the swing correction of a bone whose sensor node direction
lies within the forbidden cone. The correction method disposes of the parent
direction dp, the corresponding cone axis ac and the direction of the associated
sensor node ds to calculate the corrected direction dc:

1. Calculate the angle between the sensor direction ds and the center axis
of the cone ac:

αs = arccos (ds · ac) (4.12)

If the resulting angle is smaller than the top angle of the cone ω, cor-
rection of the swing is required since the bone is located within the

182 Software

Forbidden Cone

ω
αs

dp

ds

dc

dm

ac

ω

αc

Figure 4.11: Multiple plane constraint correction.

forbidden cone. Otherwise, the procedure ends and the corrected direc-
tion dc equals ds.

2. The projection of the sensor node direction ds on the cone mantle is
calculated by rotating the cone axis ac over the cone angle ω around
the axis that is perpendicular to both of them:

dm = Rω
ac×ds

(ac) (4.13)

3. In order to provide smoother correction rather than enforcing a strict
boundary, the elasticity is used to drag the projected direction into the
forbidden area by a fraction of the error:

dc = dm + ε (ds − dm) (4.14)

Finally, this corrected direction may be normalised if desired.

Human Model 183

Figure 4.12 shows a screen capture of the stickman before and after cor-
rections have been applied to the upper torso and the upper right leg. On the
left capture, the upper torso forms a 90◦ angle with the lower torso which is
anatomically impossible. Moreover, the upper right leg is directed way to far
backwards when considering the upright position of the pelvis and lower torso.
The right capture shows the corrected version where the upper right leg has
been dragged forward and the upper torso is forced more upright, giving the
stickman a more feasible pose. The lower right leg has also been corrected
as described in the previous section to avoid overstretching of the knee joint.
Furthermore, the forbidden cones are shown in yellow in the right part of the
figure. Note that the top angle of the cone can also exceed 90◦, as is the case
for the upper torso. The angles and axis directions of the cones for each of
the multiple constraint bones used in the human model are listed in table 4.1.
The axis coordinates are given in a reference frame where the Z-axis points
upward, the Y-axis forward and the X-axis to the left when looking at the front
side of the stickman.

Figure 4.12: Screen capture of the stickman before (left) and after (right) corrections
to the swing of the upper right leg and the upper torso have been applied.

184 Software

Bone Top angle ω Axis direction ac
Head 90◦ [0, 0, -1]

Upper torso 135◦ [0, 0, -1]
Left Upper Leg 85◦ [0, -sin 85◦, cos 85◦]

Right Upper Leg 85◦ [0, -sin 85◦, cos 85◦]
Left Upper Arm 67.5◦ [cos 67.5◦, -sin 67.5◦, 0]

Right Upper Arm 67.5◦ [-cos 67.5◦, -sin 67.5◦, 0]

Table 4.1: Cone top angles and axis directions given in the reference frame with
Z-axis pointing upward, Y-axis forward and X-axis left when looking at the front of

the stickman.

Twist Correction

The twist correction of multiple constraint bones follows the same procedure
as was outlined for single constraint bones since the restrictions on twist are
in fact the same for both types of bones. The twist bound τb is set to a rather
liberal 90◦ value for all of the bones designated as multiple constraint bones.

4.3.4 World Model

At first, the root of the stickman was always drawn in the middle of the screen
and the entire stickman was drawn by recursively adding all of the child bones
and connecting them to their parents. The result however, is a stickman that
looks as if it is hung up at the root point. When e.g. the tracked person is
bowing, the stickman will rotate around the root point, moving both its upper
and lower body in opposite directions. A better approach is to add a world
model to create a more realistic visualisation of the movements.

The model that is used is fairly simple and consists only of a flat surface
drawn at a fixed height representing a floor. It is then assumed that at least
one of the bones should touch the floor and that this must be the bone whose
endpoint has the lowest vertical component in its coordinates. Note that the
endpoint is chosen rather than the starting point as each bone starts at the
endpoint of its parent, while not every endpoint corresponds to the starting
point of another node since some of the bones do not have any child bones.

The update procedure for the world model is as follows. Before the stick-
man is drawn, the bone with the lowest endpoint is first determined, as well
as the coordinates of this endpoint in the case that the root is drawn in the
middle of the screen. The vertical component of this position is then used
to adapt the height of the point where the root is drawn in order to clip the
endpoint of the lowest bone to the floor. The horizontal components are used
to adapt the texture mapping on the floor such that the location where the
endpoint touches the floor does not change. This way, it looks as if the lowest

Conclusion 185

endpoint is stuck to the floor at the point where it first coincided with it.
This simple world model introduces a higher degree of realism to the

visualisation of the stickman as e.g. walking will actually move the stickman
around the floor. However, it also imposes some important restrictions to the
movements that are correctly reconstructed and to the real world where the
tracked person is allowed to move in. The person should indeed always have
at least one contact point with the floor which quickly rules out jumping and
even running to some extend. Furthermore, the floor should be entirely flat
and fully horizontal, an inclined floor or differences in level could imply that
the lowest bone is not always the one that is in contact with the floor.

4.4 Conclusion

The general structure of the program was first outlined by giving an overview of
the different windows that make up the entire program. The welcome window
allows the user to select the correct generation of hardware that will be used
and start the appropriate device window. These windows allow data to be
visualised using either a graph, a rotating cube or an animated stickman.
They also allow to start a calibration window when required. Following this
overview, the data flow through the application is analysed. The received data
is passed on from one class to the next while several operations convert the
received bytes into a valid orientation.

The second part of this chapter describes the human model that has been
implemented in order to correct anatomically impossible postures into feasible
ones. The recursive nature and tree structure of the bones that make up
the stickman are discussed and the swing-twist parameterisation for joints
is introduced as a means for correcting orientations. Next, the problem of
misalignment errors between the sensor node and the bone is tackled by
applying offsets to the orientation in either Euler angle or quaternion form.
Bones are divided into four categories depending on the amount of freedom
allowed by the joint that connects them to their parent. Free bones are never
corrected and simply copy the orientation from their associated sensor node,
while fixed bones copy their parent’s orientation. The joint between a single
plane constraint bone and its parent is modeled as a hinge and thus only
allows the swing to move the bone into a single half-plane. Tolerance on this
output transforms it to a wedge of half-planes smoothing the visualisation.
Multiple constraint bones are connected to their parent through a ball-and-
socket joint where swing restrictions are modeled using a cone of forbidden
directions. In both cases the twist of the bone is also smoothly bound using
an elasticity parameter. Finally, a world model is described where the bone
with the lowest endpoint is clipped to an entirely flat floor.

186 References

References

[1] N. Decraene. Electronics for Movement Analysis in Medical Applications.
Master’s thesis, Ghent University, Ghent, Belgium, 2007.

[2] F. Balena. Programming Microsoft Visual Basic 6.0. Microsoft Press,
May 1999.

[3] D. Grundgeiger. Programming Visual Basic .NET. O’Reilly Media, May
2002.

[4] H. Lam and T.L. Thai. .NET Framework Essentials. O’Reilly Media,
February 2002.

[5] Microsoft. Microsoft Brings Programming to the Masses With Visual

Studio Express, April 2006. http://www.microsoft.com/presspass/press/
2006/apr06/04-19VSExpressFreePR.mspx.

[6] R.S. Wright, B. Lipchak, N. Haemel, and G. Sellers. OpenGL SuperBible:

Comprehensive Tutorial and Reference. Addison-Wesley, July 2010.

[7] Microchip. ENC28J60, Stand-Alone Ethernet Controller with SPI Inter-

face, January 2008. http://ww1.microchip.com/downloads/en/DeviceDoc/
39662c.pdf.

[8] Digital Equipment, Intel, and Xerox. The Ethernet, A Local Area Network,

Data Link Layer and Physical Layer Specifications, September 1980.

[9] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[10] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Up-
dated by RFC 1349.

[11] Silicon Laboratories. CP2102, Single-Chip USB to UART

Bridge, October 2004. http://www.silabs.com/pages/DownloadDoc.
aspx?FILEURL=Support%20Documents/TechnicalDocs/cp2102.pdf&
src=DocumentationWebPart.

[12] Future Technology Devices International. FT232R, USB UART IC, Jan-
uary 2006. http://www.ftdichip.com/Support/Documents/DataSheets/ICs/
DS_FT232R.pdf.

[13] USB.org, Universal Serial Bus. http://www.usb.org/.

[14] Roving Networks. RN-41: Class 1 Bluetooth Module. Los Gatos, CA,
USA, August 2009. http://www.rovingnetworks.com/documents/RN-41.
pdf.

http://www.microsoft.com/presspass/press/2006/apr06/04-19VSExpressFreePR.mspx
http://www.microsoft.com/presspass/press/2006/apr06/04-19VSExpressFreePR.mspx
http://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf
http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Documents/TechnicalDocs/cp2102.pdf&src=DocumentationWebPart
http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Documents/TechnicalDocs/cp2102.pdf&src=DocumentationWebPart
http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Documents/TechnicalDocs/cp2102.pdf&src=DocumentationWebPart
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.usb.org/
http://www.rovingnetworks.com/documents/RN-41.pdf
http://www.rovingnetworks.com/documents/RN-41.pdf

References 187

[15] Bluetooth.org, Official Bluetooth Info Site. http://www.bluetooth.com/
English/Pages/default.aspx.

[16] EIA Standard RS-232-C Interface Between Data Terminal Equipment

and Data Communication Equipment Employing Serial Data Interchange,
August 1969.

[17] The Tao Framework. http://sourceforge.net/projects/taoframework/.

[18] E.P. Hanavan. A Mathematical Model of the Human Body. Techni-
cal Report TR-64-102, Aerospace Medical Research Laboratory, Wright-
Patterson Air Force Base, OH, USA, 1964.

[19] W. Mistiaen and S. Van Schoote. Motion Recognition and Adaptation

for 3D Visualisation using Wearable MEMS Sensors. Master’s thesis,
Ghent University, Ghent, Belgium, 2010.

[20] U.Y. Usta. Comparison of Quaternion and Euler Angle Methods for Joint

Angle Animation of Human Figure Models. Master’s thesis, Naval Post-
graduate School, Monterey, California, USA, 1999.

[21] D. Knuth. The Art of Computer Programming: Fundamental Algorithms,
chapter Section 2.3: Trees, pages 308–Ű423. Addison-Wesley, 1997.

[22] F.S. Grassia. Practical Parameterization of Rotations using the Exponen-

tial Map. Journal of Graphics Tools, 3(3):29–48, 1998.

[23] X.G. Wang, F. Mazet, N. Maia, K. Voinot, J.P. Verriest, and M. Fayet.
Three-Dimensional Modelling of the Motion Range of Axial Rotation of

the Upper Arm". Journal of Biomechanics, 31(10):899–908, 1998.

[24] L. Herda, R. Urtasun, P. Fua, and A. Hanson. An Automatic Method

for Determining Quaternion Field Boundaries for Ball-and-Socket Joint

Limits. In Proceedings of the Fifth IEEE International Conference on
Automatic Face and Gesture Recognition, pages 88–93, may 2002.

[25] P. Baerlocher and R. Boulic. Parameterization and Range of Motion of

the Ball-and-Socket Joint. In Proceedings of Avatars, 2000.

[26] H. Gray. Anatomy of the Human Body. Lea & Febiger, Philadelphia,
1918.

http://www.bluetooth.com/English/Pages/default.aspx
http://www.bluetooth.com/English/Pages/default.aspx
http://sourceforge.net/projects/taoframework/

5
Measurements

The performance of the tracking system is analysed in this chapter. Quanti-
tative results are obtained using a single axis rotational stage and full body
experiments validate the functionality of the entire system.

5.1 Introduction

After outlining all of the aspects involved in the design of an inertial sensor
based tracking system, the performance can finally be analysed. To this extend,
the actual orientation to which a sensor node is subjected must be known. One
approach to achieve this is to position the node according to a well known
orientation and to compare this to the output of the tracking filter. A second
approach is to compare it to the output of another tracking system that serves
as a golden standard since it has proven functionality. In the following, both
approaches are used to characterise the performance.

In the first part, the individual performance of a single node is quantified by
placing it on a uniaxial rotational stage and comparing the output of the filter
with the angular position of the stage. In the second part, full body tracking
experiments are outlined where the test subject is simultaneously equipped
with sensor nodes and with the reflective markers to allow tracking by an
optical camera system. The latter will in this case be used as a reference
given the maturity these systems have gained throughout the years.

190 Measurements

5.2 Individual Node Performance

The motorised rotational stage that is used for measurements is displayed
in figure 5.1a. The Newport URB100CC [1] is a belt driven rotational stage
powered by a DC servo motor. It features a continuous full circle travel range
and allows speeds of up to 720 ◦/s or two revolutions per second. A controller
is required in order to drive the stage and supply the correct input voltage.
The SMC100CC [2] depicted in figure 5.1b is the single axis controller that
was chosen for the task. It allows the stage to be controlled from a PC or by
an optional remote control.

(a) Rotational stage URB100CC (b) Stage controller SMC100CC

Figure 5.1: Rotational stage and controller from Newport.

The measurement setup is shown in figure 5.2. A plexiglass stand-off was
constructed in order keep the magnetometer at a certain distance from the
rotational stage since it is made entirely out of metal. The stand-off consists of
two plates atop four nylon screws of 20 cm length. One of the plates is attached
to the screws using hexnuts while the other is glued perpendicular to the side
of the first in order to allow a node to be placed vertical as well. Several
velcro strips have been applied to the stand-off which can accommodate one
or more nodes.

The rotational stage is connected via the driver to a PC allowing direct
control of the stage as well as retrieving information from it such as current
position, speed or state. The base station of the tracking system is also
connected to the same PC such that both information sequences can easily be
merged. A program has been written in VB.NET [3] to accomplish this and at
the same time control the stage’s movement.

In this section, several performance characteristics of the tracking system,
such as linearity, step response and maximal angular speed are determined

Individual Node Performance 191

(a) Rotational stage setup
(b) Zoom on the plexiglass stand-off

Figure 5.2: Measurement setup with the rotational stage.

when the node is rotated around one of its sensitivity axes. A distinction is
made between heading and tilt response since it is expected that heading
changes will be harder to track as was also reflected by the simulation results
in chapter 2.

First, the performance of the different MFG filters is analysed and com-
pared to each other. Quaternion outputs are converted to Euler angles to
allow meaningful comparison. Afterwards, the embedded filter implementation
is tested in the exact same way as the real time software version. Finally,
some characteristics of the reference MARG filter are deducted.

Before the sensor outputs are used for estimation, they are processed
according to figures 2.5 and 2.6. The calibration values are obtained using
the procedure outlined in section 2.4.2.2 using the rotational stage. Also, the
digital filter designed in section 2.5.1.2 is used. Unless explicitly mentioned
otherwise, the parameters of the MFG filters used to obtain the results in
this section are set to the optimal values determined in sections 2.5 and 2.6.
Specifically, the measurement noise covariance matrix is given by (2.129):

192 Measurements

R =

















2 × 10−5 0 0 0 0 0
0 2 × 10−5 0 0 0 0
0 0 2 × 10−5 0 0 0
0 0 0 1 × 10−5 0 0
0 0 0 0 1 × 10−5 0
0 0 0 0 0 1 × 10−5

















.

(5.1)
The feedback gain parameter τ is set to 0.8, which means that the process

noise needs to be adapted to this chosen value as was seen by the graphs in
figures 2.14 and 2.16. Therefore, the following matrices have been selected:

QEuler =





0.01 0 0
0 0.01 0
0 0 0.01



 QQuaternion =









10−6 0 0 0
0 10−6 0 0
0 0 10−6 0
0 0 0 10−6









(5.2)

Finally, the adaptive parameters ζ and ξ are set to 1000 although it is ex-
pected that, since only rotations will be executed in a controlled environment,
these parameters will have little influence on the output of the filters.

5.2.1 Linearity

In order to obtain the linearity over the entire travel range of 360◦ a stepping
test was used. This test consists of a single revolution performed in several
smaller steps. In between the steps, the stage is kept stationary for a certain
amount of time. This test can also be used to determine the offset the output
of the filter exhibits in comparison with the stage’s angular position output.
In the heading case, this offset is of major importance as the zero position of
the rotational stage might not correspond to the sensor node pointing north.

The stepping test used to obtain the subsequent results has a step size of
10◦ and a stationary period of approximately 2 s.

Considering the linearity of the sensor devices present on the boards, a
linearity error of a couple of degrees would be normal. As a realistic target
specification, a 5◦ non linearity can be set.

5.2.1.1 Heading

Figure 5.3 displays a time graph of the output of the Euler type UKF versus
the rotational stage position in a stepping test. At first sight, the linearity
looks pretty good, although there are some small deviations that can be seen.
The graph is slightly bent in such a way that the estimation lies above the

Individual Node Performance 193

rotational stage output in the beginning and at the end of the sequence and
underneath it in the middle.

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

Time [s]

H
ea

di
ng

A
ng

le
[◦]

Stepping Test of the Heading

Rotational Stage
Euler UKF

Figure 5.3: Stepping test output sequence for the Euler type UKF.

The linearity of the filter output can be analysed by applying linear re-
gression analysis [4]. First, the graph given in figure 5.3 is reduced to points
by averaging the output of the filter over the intervals of static orientation.
In order to avoid any influence of the transient response due to the steps,
the mean is calculated only over the second half of these periods. Figure 5.4
shows the resulting samples as dots together with a line corresponding to the
linear approximation. The equation representing the line is given by:

y = 1.0056 x − 0.5602. (5.3)

This shows that the rotational stage output and the filter estimation match
really well. The error between the linear approximation and the actual output
is given in figure 5.5. From this graph it is easily understood that the error
is systematic given the sinusoidal form. This implies that the source for the
error depends on the orientation and must be present in the input of the
filter. Indeed, the origin is found in the calibration of the sensor outputs, since
the filter’s estimations are based on the comparison of these sensor readings
to known values. It turns out that the linearity of the filters in the heading
rotation entirely depend on the calibration of the magnetometer, which is logic
given the fact that the accelerometer does not supply any information about
heading and its output is independent from the heading angle.

194 Measurements

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Rotational Stage Angular Position [◦]

F
il

te
r

H
ea

di
ng

A
ng

le
E

st
im

at
io

n
[◦]

Linear Regression

bc
bc bc bc bc bc

bc
bc bc bc bc bc

bc
bc bc

bc
bc bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc bc

bc

Euler UKF
Linear Approximation

bc

Figure 5.4: Linear regression applied to the mean output of the filter during a
stepping test on the heading angle.

0 50 100 150 200 250 300 350
−3

−2

−1

0

1

2

3

4

Rotational Stage Angular Position [◦]

R
es

id
ua

l
[◦]

Linear Regression Residual

Figure 5.5: Linear regression residual on heading.

Figure 5.6 shows the linear regression analysis when an error is introduced
in the magnetometer calibration on the X and Y-axis bias value. The bias was
increased by 0.05, a dimensionless number given the fact that the output is
normalised to unity. Important to mention is that the resulting residual has
increased significantly and shows peaks up to 15◦, even though the introduced

Individual Node Performance 195

bias error is only very small. It is clear that a careful calibration procedure is
required to obtain valid tracking with good linearity.

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

Rotational Stage Angular Position [◦]

F
il

te
r

H
ea

di
ng

A
ng

le
E

st
im

at
io

n
[◦]

Linear Regression

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc
bc bc

bc

Euler UKF
Linear Approximation

bc

Figure 5.6: Linear regression of the filter output when calibration errors were
introduced.

5.2.1.2 Tilt

Applying linear regression to a tilt stepping test results in the graph shown
in figure 5.7. The equation corresponding to the linear approximation is given
by:

y = 0.9962 x − 0.9805. (5.4)

The corresponding residual is depicted by the bar graph of figure 5.8. The
residual also displays a certain sinusoidal form, yet it is less obvious than
in the heading case. Also, the mean absolute error is only a third of the
heading linearisation mean absolute error. All these observations are more or
less expected since the tilt change is reflected in both sensors’ output signals
and the magnitude of change is also larger. This means that errors in the
calibration now have less effect on the linearity as one sensor can compensate
for the other.

5.2.2 Step Response

The step response is analysed using a block type test. This test is related to
the stepping test but in this case a forward step is followed by a backward

196 Measurements

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Rotational Stage Angular Position [◦]

F
il

te
r

T
il

t
A

ng
le

E
st

im
at

io
n

[◦]

Linear Regression

bc
bc
bc
bc
bc
bc
bc bc

bc
bc bc bc bc bc bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

Euler UKF
Linear Approximation

bc

Figure 5.7: Linear regression applied to the mean output of the filter during a
stepping test on the tilt angle.

0 50 100 150 200 250 300 350
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Rotational Stage Angular Position [◦]

R
es

id
ua

l
[◦]

Linear Regression Residual

Figure 5.8: Linear regression residual on tilt.

motion over the same travel range. Again, in between both movements, the
stage is kept stationary. Note however that since the stage will actually be
moving, the step is not instant as was the case in simulation. Therefore, larger
settling times are to be expected. As a realistic target for the delay between
the rotational stage and the filter estimations, 100 ms or about 10 update

Individual Node Performance 197

cycles seems reasonable.
In order to relate easily to the simulations, the travel range of the block

is set to 90◦. In between motions, a rest period of approximately 4 s is added
to allow settling of the filter output. The block is performed five times in each
test and a total of five individual tests are analysed to obtain an average
settling time for both forward and backward motion.

5.2.2.1 Heading

Euler Angle

Figure 5.9 shows a time graph of both the rotational stage position and the
Euler type filters’ output. The graphs for both the UKF and CDKF coincided,
so only one graph is drawn. The step itself is initiated at the 4 s marker, yet it
takes some time until the stage starts moving. The figure clearly indicates that
the rotational stage itself takes approximately 400 ms after this starting point
to reach the final position. This must be taken into account when comparing
the resulting settling times with the simulation results obtained in section
2.6.1.2, since this delay is not present there.

3.8 4 4.2 4.4 4.6 4.8 5 5.2
0

10

20

30

40

50

60

70

80

90

Time [s]

H
ea

di
ng

A
ng

le
[◦]

Heading Step Response Euler Angle Filters

Rotational Stage
Euler EKF
Euler SPKFs

Figure 5.9: Heading step response of the Euler type filters.

From multiple block sequences, an average 10 % settling time of 480 ms
was obtained for the SPKFs and 767 ms for the EKF, the standard deviation
to these values was 35.7 and 26.7 ms respectively. It must be noted that
the difference in performance between both filters is clearly smaller than was
the case in simulation. However, the step input here is not instant and the

198 Measurements

main difference between both filters is the steepness of the step response.
Furthermore, the delay of the EKF noted here is essentially noticeable and
even troublesome when it is used in realtime. Taking into account the transient
time of the rotational stage, the SPKFs reach within 10 % of the final value
after about 80 ms, while the EKF takes 360 ms. This indicates that the delay
of the extended version is about four to five times the delay of the SPKFs.

The sigma point filters’ response is clearly faster, yet the steepness seems
to decrease when the rotational stage decelerates before stopping at the 90◦

angular position. Given the fact that the sensor values are no longer changing
when the rotational stage comes to a full stop, the error between the predicted
and the actual measurement will decrease. The result is that the Kalman gain
will start to decrease and the response of the filter slows down. This effect
is however not seen in the EKF response, since the sensitivity of this filter
is much lower and the error remains large when the rotational stage reaches
90◦. The output is hence much smoother, but also less steep.

As was the case in simulation, peaks are found on the tilt angle output
of the filter. These peaks find their origin in the fact that the rotation takes
place around the gravity vector, which means all estimations are based on
the magnetometer’s output signals. The high sensitivity of the filter however,
causes changes on the other angles as well. In this case the peaks are about
five times smaller compared to the simulation. The reason lies in the slower
transition from a zero angle to the final position, which results in a more
gradual change in output angles.

Quaternion

The 10 % mean settling times for the quaternion filters and their standard
deviations are given in table 5.1. It is clear that all filters have a similar step
response and perform as well as the sigma point versions of the Euler angle
type filter.

EKF SPKFs
Mean [ms] 478 484

Standard Deviation [ms] 24.9 29.9

Table 5.1: Quaternion type filters settling time to a heading step.

A comparison of both Euler and quaternion type filters is given in figure
5.10. The output of the quaternion filters has been converted to Euler angles
for the comparison to make sense. As can be seen, the differences between
the filters are very small. The response of the Euler SPKFs and quaternion
EKF almost coincide, while the quaternion SPKFs exhibit a slightly steeper
response. However, this advantage does not lead to a lower delay as the other

Individual Node Performance 199

filters seem to respond better when the stage reaches its final destination.
Since all filters display similar responses, it is also clear that the sigma point
version of the quaternion filter yields an increase in complexity, while offering
very little advantage over the extended filter. This validates the choice to
embed the quaternion EKF in the firmware of the sensor nodes.

4.2 4.25 4.3 4.35 4.4 4.45 4.5 4.55 4.6
0

10

20

30

40

50

60

70

80

90

Time [s]

H
ea

di
ng

A
ng

le
[◦]

Heading Step Response of the Quaternion Filters

Rotational Stage
Euler SPKFs
Quaternion EKF
Quaternion SPKFs

Figure 5.10: Heading step response of the Euler and Quaternion filters.

5.2.2.2 Tilt

The 10 % mean settling times of the filter output response to a tilt step and their
standard deviations are given in table 5.2. The trend of an underperforming
Euler type EKF is again obvious. However, contrast to the expectations,
only the Euler EKF performs significantely better for a tilt step compared to
a heading step. The standard deviations are comparable, but for the Euler
EKF it is much lower, hinting to a more uniform response due to the larger
magnitude of the sensor signals.

Euler Quaternion
EKF SPKFs EKF SPKFs

Mean [ms] 606 469 462 454
Standard Deviation [ms] 7.8 29.4 27.3 31.8

Table 5.2: Filter settling time to a tilt step.

Figure 5.11 displays a time graph of the tilt step response of each of the
filters. Comparing this result to the graphs in figures 5.9 and 5.10 explains

200 Measurements

why the settling time is almost equal. In the heading case, the filter needs
more time to detect which angle should be changed. This can be seen by
looking at the point where the filter response starts increasing, in the heading
case this only occurs at timestamp 4.2 s, while in the tilt case the angle is
already increased to 10◦ at this point. From this point on to approximately
timestamp 4.4 s, the heading response reaches a higher steepness than is the
case for the tilt step and both end at about 65◦ when the rotational stage
stops moving. The main reason for the difference in steepness lies in the fact
that the step input is not instant, but rather gradual since it is executed by the
rotational stage. In the tilt case, the response is equally steep as the input,
while in the heading case the filter seems to catch up. This higher steepness
is the merit of the feedback parameter. After the 4.4 s mark, the tilt response
maintains a higher rate of change since the Kalman gain is larger due to the
larger magnitude of the sensor signals and the fact that both sensors give
information about the error in the orientation estimate.

4.1 4.2 4.3 4.4 4.5 4.6 4.7
0

10

20

30

40

50

60

70

80

90

Time [s]

T
il

t
A

ng
le

[◦]

Tilt Step Response

Rotational Stage
Euler EKF
Euler SPKFs
Quaternion EKF
Quaternion SPKFs

Figure 5.11: Tilt step response of the Euler and Quaternion filters.

5.2.3 Angular Speed and Delay

The jogging test consists of a fixed number of revolutions performed at a certain
constant speed. From this test, the maximal angular speed that can be tracked
correctly is determined, as well as the delay between the filter output and the
stage orientation during motion. Although the ability to track faster speeds is
always more appealing, much of the common human movement remains below

Individual Node Performance 201

a single revolution per second.
Each jogging test consists of five full circle rotations. The angular speed

starts at 10 ◦/s and increases in steps of 10 ◦/s with each test, until the highest
attainable speed is reached, i.e. 720 ◦/s.

Before analysing the output sequences of the filters, an offset was applied
in order to correct for the north orientation in the heading case and misalign-
ment of the sensor node to the rotational stage in the tilt case. This offset
was obtained from the stepping test described earlier in this section.

5.2.3.1 Heading

The maximum angular speed that the filters were able to track are given
in table 5.3. These values are determined by looking at the final heading
output value after five subsequent full circle rotations and checking if this
value exceeds 1620◦, which corresponds to four and a half revolutions. If this
was not reached, it is assumed that at least one revolution has been missed
by the filter.

Euler Quaternion
EKF SPKFs EKF SPKFs
290 600 640 670

Table 5.3: Maximum traceable angular speed [◦/s] for heading rotations.

For the Euler case, the results once again show the slow response time of
the EKF compared to the SPKFs. The filters with quaternion representation
seem to perform equally well. However, there is a bit of difference between the
Euler SPKFs and the quaternion filters that is not expected considering that
their step response given in figure 5.10 is very similar. The reason probably
lies in the way rotations are described by each representation and how the
measurement model is built. The non-linearity of the sines and cosines in
the Euler model are very hard to overcome. While the EKF only manages to
generate slow linearisation and tracking, the SPKFs fulfill this task better. In
the quaternion case, the model non-linearity is not so extreme and an extended
approximation even seems to be up to the task. This difference in linearity is
now reflected in the maximum speed that the filters can track.

Figure 5.12 displays the delay between the rotational stage output and
the filter estimations versus the angular speed of the jog test. Note that the
discrete nature of the graphs is due to the fact that the delay is initially
calculated as a discrete number of samples. All filters exhibit an increasing
delay with increasing angular speed. The delay of the Euler EKF lies between
two to three times higher than the other filters and remains above 200 ms. Up
until about one revolution per minute, the delay of the other filters stays

202 Measurements

0 100 200 300 400 500 600 700

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Angular Speed [◦/s]

D
el

ay
[s

]

Filter Delay During Heading Rotation

Euler EKF
Euler SPKFs
Quaternion EKF
Quaternion SPKFs

Figure 5.12: Filter output delay for heading rotations.

around 125 ms. The quaternion SPKFs also seem to perform slightly better,
but then again, these filters have also shown the steepest step response.

0 100 200 300 400 500 600 700

5

10

15

20

25

30

Angular Speed [◦/s]

M
ea

n
A

bs
ol

ut
e

Tr
ac

ki
ng

E
rr

or
[◦]

Mean Absolute Tracking Error During Heading Rotation

Euler EKF
Euler SPKFs
Quaternion EKF
Quaternion SPKFs

Figure 5.13: Mean absolute error on the filter output for heading rotations.

The mean absolute error between the filters and the rotational stage is
shown in figure 5.13. This error has been calculated between the delayed
version of the filter output and the angular position of the rotational stage.

Individual Node Performance 203

From the graph, it is easily understood that all filters exhibit the same amount
of error when the same angular speed is applied. The mean error also seems
to increase in a quadratic way with increasing angular speed. On average,
the error remains below 8◦ when the angular speed is restricted to a single
revolution per second.

Finally, figure 5.14 shows the standard deviation on the error shown in
figure 5.13. The increase indicates that by increasing the angular speed, the
error is less constant, meaning that the response is less linear. Indeed, this
effect is validated by the graphs in figure 5.15, where the filter output has
been plotted versus the rotational stage output. At 400 ◦/s, the graph exhibits
sinusoidal variations that are not visible at 100 ◦/s. The cause is mainly found
in the calibration of the sensors as was already shown in section 5.2.1.1.

0 100 200 300 400 500 600 700

2

4

6

8

10

12

14

16

18

20

Angular Speed [◦]

S
ta

nd
ar

d
D

ev
ia

ti
on

on
Tr

ac
ki

ng
E

rr
or

[◦]

Standard Deviation Error During Heading Rotation

Euler EKF
Euler SPKFs
Quaternion EKF
Quaternion SPKFs

Figure 5.14: Standard deviation on the absolute error of the filter output for for
heading rotations.

5.2.3.2 Tilt

In the tilt case, all of the filters, except the Euler EKF, manage to track
rotations with angular speeds up to 720 ◦/s. The maximum traceable speed
can hence not be determined since the rotational stage has reached its limit.
This result follows from the fact that for tilt rotations, both the accelerometer
and the magnetometer contribute actively to the output of the filter and that
the amplitude of the signal on the sensor readings is also larger.

The tracking delay versus the angular speed is given by the graphs in
figure 5.16. The Euler EKF again displays a much higher delay which is

204 Measurements

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

800

1000

1200

1400

1600

1800

Rotational Stage Angular Position [◦]

E
ul

er
U

K
F

H
ea

di
ng

A
ng

le
E

st
im

at
io

n
[◦]

Filter versus Rotational Stage Position During Heading Rotation

100 ◦/s
400 ◦/s

Figure 5.15: Euler UKF output versus rotational stage angular position for heading
rotations.

mostly above 200 ms over the entire tracking range. From an angular speed of
550 ◦/s on, the delay on this filter decreases. However, as will be shown by the
following figures, the tracking performance of this filter quickly deteriorates
at these angular speeds and the resulting delay may no longer be accurate.
For the other filters, the delay is slightly lower in the tilt case compared to
tracking heading rotations. Over the entire range, the delay on all these filters
remains below 130 ms.

The mean absolute error between the rotational stage’s angular position
and the filter output is shown in figure 5.17 and the associated standard
deviation in figure 5.18. The error on the EKF slowly increases until an
angular speed of about 550 ◦/s, here a sudden increase is seen due to the
fact that the filter is having a hard time keeping up with the rotational stage’s
output. As a result, the linearity in the response is greatly reduced as can
be seen by the increase in the standard deviation graph. All other filters
show different behaviour where the absolute mean error rises until the 500 ◦/s
point, after which the mean error seems to fluctuate highly, unlike the heading
case where the error increased. Since the filters can actually track higher
angular speeds, the mean absolute error is now a function of sensor noise and
calibration errors and therefore varies with each test. In general however, it
seems that the tracking error of all filters except the Euler EKF remains below
10◦ for any rotation speed.

Individual Node Performance 205

0 100 200 300 400 500 600 700 800
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Angular Speed [◦/s]

D
el

ay
[s

]

Filter Delay During Tilt Rotation

Euler EKF
Euler SPKFs
Quaternion EKF
Quaternion SPKFs

Figure 5.16: Filter output delay for tilt rotations.

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

Angular Speed [◦/s]

M
ea

n
A

bs
ol

ut
e

Tr
ac

ki
ng

E
rr

or
◦]

Mean Absolute Tracking Error During Tilt Rotation

Euler EKF
Euler SPKFs
Quaternion EKF
Quaternion SPKFs

Figure 5.17: Mean absolute error on the filter output for tilt rotations.

5.2.4 Embedded Filter

In this section, the performance of the embedded version of the tracking filter
proposed in section 3.4 is analysed. The linearity will not be determined, since
it has been proven that this characteristic entirely depends on the quality of
the calibration. The filter characteristics are compared to the performance of

206 Measurements

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

20

Angular Speed [◦/s]

S
ta

nd
ar

d
D

ev
ia

ti
on

on
Tr

ac
ki

ng
E

rr
or

[◦]

Standard Deviation Error During Tilt Rotation

Euler EKF
Euler SPKFs
Quaternion EKF
Quaternion SPKFs

Figure 5.18: Standard deviation on the absolute error of the filter output for tilt
rotations.

the quaternion type EKF, since the embedded filter is of the same type.
Note that since the embedded filter runs on the microcontroller, this filter

is not influenced by package drops inherent to the wireless communication
interface. The software filter is only run on the samples that are actually
received by the computer. If a package is lost while rotations are taking
place, the filter will need to catch up later on.

Also note that the results in this section were obtained by repeating the
tests described in the previous sections. Since nodes were programmed to
either transmit sensor data or orientation estimations, a single test did not
suffice. This can explain small differences between both results.

5.2.4.1 Step Response

Table 5.4 lists the mean of the 10 % settling time of the filters as well as
the standard devation. The embedded filter seems to have more difficulty in
tracking heading steps as the delay is about 100 ms more compared to the
software implementation. In the tilt case however, it seems to perform slightly
better. The standard deviation on the embedded filter is also significantely
lower indicating a more uniform response. The reason for these differences lies
in the fact that the measurement covariance matrix consists of larger values
in order to avoid overflow of the fixed point representation format. This filter
is hence more conservative and is less sensitive than the software version
resulting in a more uniform response.

Individual Node Performance 207

Software Embedded
Heading Tilt Heading Tilt

Mean [ms] 478 462 594 448
Standard Deviation [ms] 24.9 37.5 13.2 12.6

Table 5.4: Embedded and software filter settling time.

The heading and tilt step response of the embedded and software filter
are shown in figures 5.19 and 5.20 respectively. In the heading case, both
responses are very similar. The main difference is found in the fact that the
embedded filter’s response is less steep during the entire sequence. Also,
since the embedded filter has only reached 60◦ when the rotational stage
stops moving, the final part where the gain is smaller takes longer to complete.

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
0

10

20

30

40

50

60

70

80

90

Time [s]

H
ea

di
ng

A
ng

le
[◦]

Heading Step Response

Rotational Stage
Embedded
Software

Figure 5.19: Response of the embedded and software filter to a heading step.

For the tilt case, both responses display a slightly different form. While
the software filter slows down at the end to crawl towards the final value, the
embedded filter overshoots before settling. An explanation for this behaviour
may again be found in the difference in parameter values. The embedded filter
is programmed with higher measurement noise, meaning that this filter relies
more on its prediction compared to the software filter. Since the prediction
dictates that the quaternion rate of change is approximately maintained, the
filter output keeps increasing while the rotational stage is already deceler-
ating. At a certain point, the filter notices that the sensor values correspond
better to the predicted measurements and the correction dictates that the rate

208 Measurements

of change in the response should be tempered. This also explains why the re-
sponse of the embedded filter seems less steep in the beginning, it takes some
time before the required rate of change builds up. Once the it is established,
the feedback keeps it alive. However, this also means that it takes some time
before this rate is reduced again.

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
0

10

20

30

40

50

60

70

80

90

Time [s]

T
il

t
A

ng
le

[◦]

Tilt Step Response

Rotational Stage
Embedded
Software

Figure 5.20: Response of the embedded and software filter to a tilt step.

5.2.4.2 Angular Speed and Delay

The maximum angular speed that the filters are able to track during both
heading and tilt rotations are listed in table 5.5. Both filters manage to track
tilt revolutions with angular speeds all the way up to 720 ◦/s. In the heading
case, the embedded filter is clearly outperformed by its software counterpart.

Software Embedded
Heading Tilt Heading Tilt

640 720 460 720

Table 5.5: Maximum traceable angular speed [◦/s] of the embedded and software
filter.

Figure 5.21 shows the delays that each of the filters exhibit during constant
heading and tilt rotations. In the tilt case, both are very tight together, yet for
heading rotations, the underperformance of the embedded filter is confirmed.
Clearly, the higher measurement covariance is again to blame.

Individual Node Performance 209

0 100 200 300 400 500 600 700

0.05

0.1

0.15

0.2

0.25

0.3

Angular Speed [◦]

D
el

ay
[s

]

Filter Delay During Rotation

Heading - Embedded
Heading - Software
Tilt - Embedded
Tilt - Software

Figure 5.21: Embedded and software filter output delay during rotation.

The mean absolute error and the corresponding standard deviation are dis-
played in figures 5.22 and 5.23 respectively. For the heading case, the form
of both graphs is very similar. As was the case for the step response given in
figure 5.19. For tilt rotations, the error graphs coincide up to approximately
450 ◦/s, at which point the error on the software filter output starts varying
wildly, while for the embedded filter the error increases further before stabil-
ising around 10◦. This trend difference is not seen in the standard deviation,
here, both graphs almost coincide.

5.2.5 MARG Filter

The performance of the designed filter must still be compared to the MARG
filter performance. Given the fact that the gyroscope only supplies information
when movements are taking place, the linearity will not be analysed. Obtain-
ing the angular rate as an extra input is only expected to improve the dynamic
response of the filter, while the static behaviour is dictated by the accelerom-
eter and magnetometer combination. Given the fact that the MARG filter used
is an adaptive, unscented Kalman filter using Euler angle representation, its
characteristics are compared to the Euler MFG UKF.

Note that the results obtained in this section use the same data sequences
that were used for calculating the characteristics of the MFG software filters.
This way, both filters experience the same data loss due to environmental
disturbances and the same noise is present on the sensor readings.

210 Measurements

0 100 200 300 400 500 600 700
0

5

10

15

20

25

Angular Speed [◦/s]

M
ea

n
A

bs
ol

ut
e

E
rr

or
[◦]

Mean Absolute Tracking Error During Rotation

Heading - Embedded
Heading - Software
Tilt - Embedded
Tilt - Software

Figure 5.22: Mean absolute error on the embedded and software filter output during
rotation.

0 100 200 300 400 500 600 700
0

5

10

15

20

Angular Speed [◦]

S
ta

nd
ar

d
D

ev
ia

ti
on

on
Tr

ac
ki

ng
E

rr
or

[◦]

Standard Deviation Error During Rotation

Heading - Embedded
Heading - Software
Tilt - Embedded
Tilt - Software

Figure 5.23: Standard deviation on the absolute error of the embedded and software
filter output during rotation.

5.2.5.1 Step Response

The mean 10 % settling times on the heading and tilt step response of the
MFG and MARG filter are given in table 5.6, together with the respective

Individual Node Performance 211

standard deviations. The MARG filter is between 30 and 70 ms faster than
the gyroless tracker. Also, the standard deviation is a lot smaller. Both of
these results are thanks to the better prediction consisting of the integration
of gyroscope signals.

MFG MARG
Heading Tilt Heading Tilt

Mean [ms] 480 469 414 434
Standard Deviation [ms] 26.7 29.4 7.2 6.9

Table 5.6: MFG and MARG filter settling time.

A time graph of the heading and tilt step response of both filters is given
in figures 5.24 and 5.25 respectively. It is easily understood that the response
of the MARG filter is much smoother and a little faster in both situations.
In the heading case, the MARG filter response starts rising as soon as the
gyroscope readings indicate a rotation. Since this signal is not available for
the MFG filter and all estimations for heading rotations are based on small
variations on the magnetometer signal, it is already lagging behind from the
start. At the end of the step, an overshoot occurs in the MARG graph. The
reason lies in the calibration of the gyroscope. It seems that either the offset
is too high or the gain is too large, resulting in a positive integration error.
This error is then slowly corrected by the magnetometer readings and evolves
towards the MFG filter output final settling value.

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
0

10

20

30

40

50

60

70

80

90

Time [s]

H
ea

di
ng

A
ng

le
[◦]

MFG and MARG Filter Heading Step Response

Rotational Stage
MFG Filter
MARG Filter

Figure 5.24: Response of the MFG and MARG filter to a heading step.

212 Measurements

For the tilt step, a slightly different scenario is seen. Both filters start
responding approximately at the same time and no overshoot is seen on the
MARG response. The explanation to these observations is found in both
a better calibration of this sensitivity axis for the gyroscope and the fact
that all three sensors offer information about this rotation with signals of a
bigger magnitude. Therefore, both the prediction in the MARG filter and the
correction in either filter is of a better quality.

3.8 4 4.2 4.4 4.6 4.8 5
0

10

20

30

40

50

60

70

80

90

Time [s]

T
il

t
A

ng
le

[◦]

MFG and MARG Filter Tilt Step Response

Rotational Stage
MFG Filter
MARG Filter

Figure 5.25: Response of the MFG and MARG filter to a tilt step.

Note that the overshoot and steeper response in the heading case due to
small calibration errors explain the fact that the settling time result stated
in table 5.6 is higher for the tilt step. However, this also means that if the
tracking error would be considered, it would be found to be higher in the
heading case.

5.2.5.2 Angular Speed and Delay

The MARG filter manages to track all revolutions in jog tests with angular
speeds up to 720 ◦/s in both the tilt and heading direction. The delay that
is measured with these tests is given by the graphs in figure 5.26. In the
heading case, a negative delay is found due to the error in the calibration of
the gyroscope. The rotational stage angular position is lagging behind the
filter output because the integration results in higher values than expected.
However, the form of the graph is similar to the delay seen in the MFG
output. For tilt revolutions, the MARG filter seems to consistently exhibit a

Individual Node Performance 213

30 ms lower delay, except for very low rotational speeds where the correction
still has a major influence on the final estimate since the predicted change is
fairly small.

0 100 200 300 400 500 600 700
-0.1

-0.05

0

0.05

0.1

0.15

0.2

Angular Speed [◦/s]

D
el

ay
[s

]

Filter Delay During Rotation

Heading - MFG
Heading - MARG
Tilt - MFG
Tilt - MARG

Figure 5.26: MFG and MARG filter output delay during rotation.

The mean absolute error on the filter outputs during rotation is plotted
versus the angular speed in figure 5.27. In general, the MARG filter displays
a lower error than the MFG filter over the entire range and for higher angular
speeds, the MARG filter graphs for tilt and heading rotations indicate an
equivalent error. Since the error on the output at high speeds is mainly
dominated by the gyroscope readings, this is no surprise. Apart from some
exceptions, the absolute error on the MARG output remains below 6◦.

For the heading case, the MARG response displays a single peak at
210 ◦/s. This is due to the loss of several packages in a short timeframe.
The prediction is therefore less accurate since the discrete integration is no
longer correct, and a relatively big error is seen on the output. The magne-
tometer signal corrects this error, yet since the prediction is trusted more in
the MARG type of filter, this takes more time than is the case in the MFG
filter where the loss of samples is comparable to a higher angular speed. At
low angular speed, the MARG error decreases with increasing speed. Since
the MARG output here is still affected by the readings of the magnetometer,
the error is similar to the error on the MFG output. At higher speeds, the
prediction becomes more important and the graphs diverge.

Below 200 ◦/s, both filters’ error graphs for tilt revolutions coincide. Af-
terwards, the error on the MFG output increases further as the MARG error

214 Measurements

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

16

18

20

Angular Speed [◦/s]

M
ea

n
A

bs
ol

ut
e

E
rr

or
[◦]

Mean Absolute Tracking Error During Rotation

Heading - MFG
Heading - MARG
Tilt - MFG
Tilt - MARG

Figure 5.27: Mean absolute error on the MFG and MARG filter output during
rotation.

stabilises. It seems that in general the error on the MARG filter output in-
creases approximately linear with the angular speed, while for the MFG filter
a quadratic relation is seen.

The standard deviation is not given, since these graphs show the same
trends and the exact same conclusions may be drawn from them.

5.3 Full Body Tracking

Contrast to the previous section, sensor data is gathered from nodes that are
subjected to complex motions where the axis of rotation is not constant and
not necessarily coincides with one of the sensitivity axes. To this extend, they
are placed on the body of a test subject who is to perform certain actions.
This person is then simultaneously tracked with an optical system in order to
allow a comparison to be made.

The inertial system has been used on three occasions to perform full body
tracking. The first time was in December 2008 when a coworker has been
tracked during a dance choreography. A second experiment took place in
April 2009 and consisted of tracking a person during the execution of various
movements. And finally, in January 2011, a subject was asked to perform
walking and running exercises on a treadmill while being equipped with sensor
nodes.

Full Body Tracking 215

5.3.1 Dance Performance

The dance demonstration was organised in conjunction with the Institute for
Psychoacoustics and Electronic Music (IPEM), since they have an optical
tracking system available and also have a background in motion analysis of
music and dance related performances [5–7]. Nadine Carchon, a coworker
at CMST, accepted the challenge to develop a dance choreography that was
suited for the initial testing of the system. This choreography should start
with slow movements of individual limbs in the beginning to more complex full
body and faster motion at the end.

The test subject was equipped with the second generation system, as this
was the newest version available at that time. In total, ten nodes were applied
to the body, two on each limb and two on the torso. At the same time, several
reflective spheres were also placed to allow tracking by the optical system.
Furthermore, a camera was also used to record the entire performance from
the front.

Although an optical system has been used for tracking, numerical data
describing the orientation of the limbs has never been extracted. Therefore,
the comparison that is made here consists of screen captures from video footage
and both the optical and inertial system visualisations by means of a stickman.

Figure 5.28 displays eight snapshots of the recorded sequence along with
the corresponding inertial tracking estimation. The captures span a four sec-
ond interval, so the time in between two of them is approximately half a
second. Note that the stickman visualisation and filter architecture date from
an older software version. Hence, no world model including a floor is present
and offsets due to misalignment have not been subtracted. Also, no corrections
according to the human model are applied since this was not yet available at
the time of capture.

The general posture of the stickman seems to correspond well to the pose
of the test subject in the video footage. The heading might in some cases
not be exact. In the first picture e.g. the left upper leg seems to point rather
forward, where in the stickman reconstruction it points more towards the left.
This exact same error can also be seen in the third snapshot. Some slight
mistakes in tilt can be observed in the final capture, where the torso and right
arm should normally overlap according to the video footage.

Snapshots from a different part of the dance choreography are given in
figure 5.29. The timespan covered here lasts approximately twelve seconds.
The groundwork in the first four figures is nicely tracked aside from some offset
errors. The second part where the dancer gets up can be recognised when
looking at the stickman, yet the visualisation is less smooth and transients
are visible since this happens quite fast.

From this dance experiment, some of the limitations of the optical system

216 Measurements

Figure 5.28: Eight snapshots spanning a four second period in the dance
choreography where the left leg swings from front to back. Video capture and

corresponding stickman visualisation from inertial estimations are given.

were very clear. First, the choreography had to be limited in space, since the
tracking area is approximately restricted to a circle with a radius of one meter.
For the inertial system, only the range of the wireless interface restricts the
working volume. Second, it took some time to set up the markers on the test
subject’s body and to calibrate the camera system, while the inertial system
was ready for capturing after merely five to ten minutes. Finally, occlusion

Full Body Tracking 217

Figure 5.29: Eight snapshots spanning a twelve second period in the dance
choreography including groundwork and getting back up in spiral motion. Video

capture and corresponding stickman visualisation from inertial estimations are given.

of some of the markers leads to wrongful reconstruction of the posture. This
problem is shown by the stickman visualisations given in figure 5.30. The eight
snapshots in this figure display the posture estimations of the optical system
to the video captures given in figure 5.29. Each snapshot of the stickman
visualisation gives a three dimensional view in the left upper corner, a front
view in the upper right, a side view in the lower left corner and a top view in
the lower right. In some of the captures, one of the limbs of the stickman is

218 Measurements

coloured red, indicating that occlusion is taking place for the markers on this
particular bodypart. The right lower leg suffers from this problem in the first
five snapshots and temporarily assumes incorrect orientations.

Figure 5.30: Optical system stickman visualisation

Full Body Tracking 219

5.3.2 Various Movements

The other two full body tracking experiments have been executed in coopera-
tion with the department of movement and sport sciences who have been active
for many years in human gait analysis [8, 9] based on measurements performed
with an optical tracking system they also own. In this experiment, a person
was tracked using both the inertial and optical systems while performing a set
of different movements. Table 5.7 lists the different tests that were executed.

Test Description
1 Arm and leg lifting
2 Walking
3 Running
4 Turning around
5 Arm and leg twisting
6 Lower body movements
7 Upper body movements
8 Fast knee flexion and extension

Table 5.7: List of the movements in the second full body tracking experiment
consisting of various movements.

Once again, a total of ten nodes was used for inertial tracking in each
test. Two are placed on each limb and two on the torso. Contrast to the dance
demonstration however, the data received from the optical system during the
experiment was processed to obtain the orientation of the same bodyparts
that were tracked by the inertial system. Both outputs can be compared
in order to analyse the accuracy of the system in a more quantitative way.
Important to mention is that the delay of tracking between both systems cannot
be determined, since the data was received on two different computers and
no synchronisation was present aside from a human approach where both
programs were started after a countdown.

Table 5.8 lists the mean absolute error between the Euler unscented filter
estimations and the optical system output in degrees. These errors have been
determined after applying offset correction on the filter angles and attempting
to remove the time delay between both sequences. The offset results from
alignment errors between the reference frame of the sensor nodes and that of
the optical system, while the delay is due to the manual synchronisation and
the delay inherent to the filter.

In the table, several cells have been given a grey background. The error
mentioned in these cells should not be considered too seriously since visual
inspection of the output indicated that the optical system output is rather
untrustworthy due to data loss by blocked LoS from the markers to one or
more cameras resulting in clipping or occlusion of the bodypart. Furthermore,

220 Measurements

three column headers have also been coloured. The reason here is found in
the calibration. The nodes associated to the bodyparts listed in these columns
exhibited problems in the calibration of the magnetometer. Hence the mean
absolute error on the yaw angle result for these bodyparts are rather high
compared to the other nodes.

Important to note is that the test was conducted in a room with metal
walls. Therefore, the earth magnetic field was shielded and weakened inside
the room. The result is that the calibration of the magnetometer in general
is no longer entirely valid and the performance of the filter is not optimal.
Also, the results listed in table 5.8 were obtained using the same parameters
as listed in the beginning of section 5.2, except for the measurement noise
covariance. These values were chosen higher as the filter seemed way too
sensitive to changes and the effect of motion disturbance had been underes-
timated. Finally, racc was set to 2 × 10−3 and rmag to 1 × 10−3, or 100 times
larger than was determined in section 2.5.2.1.

The comparison of the data sets is not straightforward and requires some
tricky preprocessing. Since Euler angles are used, both reference frames
should be lined up first. The optical frame will be used in the sequel where
the Z-axis points upwards, the Y-axis points forward out of the bodypart and
the X-axis is chosen to form a right-handed base, namely pointing to the right
side of the subject. The zero or neutral position where each angle equals zero
corresponds to the standard pose as defined in section 4.3.2 and visualised in
figure 4.5. The subject will however not be facing North, yet to the front of the
room, which explains the offset. Since multiple Euler angle sets can represent
the same orientation as has been outlined in section 2.2.1, the angles were
first converted to a unique set where φ ∈ [−180◦, 180◦[, θ ∈ [−90◦, 90◦[and
ψ ∈ [0◦, 360◦[. The optical data was obtained in a time driven way, so the
sample rate is linear. The inertial data however, is captured when it is received
by the computer. As wireless communication is involved, samples were lost in
the process. These samples were reconstructed by linear interpolation where
the package counter indicates that data is missing. This step is required in
order to keep both sequences aligned in time. Finally the mean absolute error
is calculated modulo 360◦ for roll and yaw and modulo 180◦ for pitch after
applying the delay for synchronisation.

Since the mean absolute error only supplies general information about the
tracking precision, time graphs of orientation originating from both systems
will be compared in the following. Figure 5.31 shows graphs of the orientation
output of the filter and the optical system for the right upper leg during the first
test. Leg orientation is given since the arms were out of the camera scope when
lifted. The inertial system seems to track the changes in orientation pretty
well, as could already be determined from the values in table 5.8. However,
there clearly is a lot more noise present on the inertial signals, distinctly

Full
Body

Tracking
221

Table 5.8: Mean absolute error between filter estimations and optical system output angles in degrees.

Test
no.

Euler
angle

Left
upper
leg

Left
lower
leg

Right
upper
arm

Right
lower
arm

Left
upper
arm

Left
lower
arm

Right
upper
leg

Right
lower
leg

Upper
torso

Lower
torso

1
Roll
Pitch
Yaw

0.89
1.64
2.13

2.82
1.17
1.59

6.83
6.18
11.74

2.80
2.37
3.30

20.15
19.09
30.11

3.01
2.40
3.71

1.14
0.80
2.30

1.94
0.74
3.68

1.44
1.52
2.39

2.29
1.53
2.43

2
Roll
Pitch
Yaw

6.74
4.44
12.33

13.63
6.60
15.24

4.03
3.92
10.42

11.79
4.73
31.35

3.87
3.61
13.59

8.21
4.42
14.81

11.11
5.77
39.76

11.27
5.50
14.54

2.75
3.53
12.54

3.53
3.24
24.55

3
Roll
Pitch
Yaw

16.60
8.47
29.57

19.11
7.74
21.28

15.00
9.68
27.26

30.93
17.72
84.36

10.30
7.17
19.43

21.59
18.36
48.29

18.46
7.91
51.93

26.88
15.87
35.13

5.29
4.34
16.44

3.86
4.08
24.03

4
Roll
Pitch
Yaw

7.53
6.96
19.77

7.84
7.23
21.74

5.84
7.76
19.35

9.26
6.39
27.46

13.96
8.47
22.27

7.90
8.53
26.79

8.46
7.36
32.39

7.26
6.09
23.06

6.38
4.98
19.81

7.83
5.40
26.39

5
Roll
Pitch
Yaw

3.29
7.02
9.30

13.55
5.50
34.00

5.91
4.11
12.62

11.60
9.37
18.86

8.40
7.02
10.97

9.11
6.86
16.45

4.87
5.75
11.91

6.44
4.52
12.79

1.79
2.96
7.76

4.62
3.07
6.80

6
Roll
Pitch
Yaw

2.72
5.04
9.47

9.53
7.14
22.81

1.77
1.53
4.45

2.98
2.26
5.86

3.85
2.42
3.73

2.03
2.34
5.15

4.87
4.67
11.45

9.11
4.58
18.31

1.36
1.79
4.36

3.97
2.81
5.84

7
Roll
Pitch
Yaw

1.05
2.05
3.66

2.27
1.71
5.92

10.95
7.85
25.14

9.38
8.70
26.39

8.61
8.24
15.39

8.62
7.69
17.45

1.32
1.36
3.51

1.00
0.93
2.03

2.69
3.29
6.23

3.58
4.04
4.96

8
Roll
Pitch
Yaw

11.08
10.88
22.67

23.97
9.60
55.98

6.22
4.12
18.66

8.10
8.73
26.69

8.79
9.42
22.51

6.61
9.38
19.91

4.64
4.42
28.80

4.64
5.64
17.36

3.92
3.77
19.32

8.55
5.37
26.58

222 Measurements

on the pitch and yaw angles. This is mainly due to the weak magnetic field
and the fact that errors on the yaw angle are corrected through changing the
pitch angle in an attempt to match up the magnetic readings. An additional
post-filter can reduce the noise, but an extra amount of delay must in that
case be tolerated.

0 5 10 15 20 25
−20

−10

0

10

20

30

Time [s]

R
ol

l
A

ng
le
φ

[◦]

Inertial
Optical

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

Time [s]

P
it

ch
A

ng
le
θ

[◦]

Inertial
Optical

0 5 10 15 20 25

245

260

275

290

305

Time [s]

Ya
w

A
ng

le
ψ

[◦]

Inertial
Optical

Figure 5.31: Right upper leg orientation angles during test 1.

The orientation of the left upper leg during the second test is displayed
in figure 5.32. The subject was asked to walk from left to right and back

Full Body Tracking 223

again several times. Clearly, the limitations of the camera system surface
in this test since no orientation data is available at the turning points due
to the fact that the person was out of the tracking space where not enough
cameras could see the markers correctly. The turning points are obvious in
the yaw graphs however, as the output switches between two steady states
at around 270◦ and 90◦, which are separated by 180◦. In the roll graph, the
inertial system is close to the optical reference output, in the other graphs,
errors seem to emerge. The cause of these errors is found in the disturbance
of the accelerometer signal each time the subject’s foot hits the ground and
a shock is measured. Thanks to the dynamic adaptation of the accelerometer
measurement noise, this error is somewhat suppressed. When ζ is set to zero,
the mean absolute error on the left upper leg output is found to be 14.11◦,
5.98◦ and 16.36◦ on roll, pitch and yaw respectively. A similar trend is seen
on the other bodyparts, yet more important is the fact that the instant error
grows even larger.

Figure 5.33 shows time graphs of the orientation of the lower torso during
the running test. The filter is clearly having a hard time keeping up the
estimates and relatively big errors are seen. The yaw angle is able to keep
up the turning points however and the roll angle is still pretty much tracking
right. However, as can be seen in table 5.8, the results for the limbs is much
worse. Also note that the calibration error on the magnetometer of the sensor
node attached to the lower torso, which was already indicated in the table, is
pretty clear from the yaw graph.

The orientation estimates for the right upper arm during the fourth test
have been plotted in figure 5.34. Several of the full circle rotations are visible
on the yaw graph, however, the filter is not able to keep up with all of them.
Cycle slips are visible around timestamps 6, 12 and 20 s. The filter keeps
up at first, but finally turns its estimates around the other direction to meet
back with the optical output values. With each cycle slip, errors on the other
two angles can also be distinguished, roll exhibits negative peaks and pitch
positive ones. These temporary transients are an attempt of the filter to line
up the sensor measurements to the expected values with a wrongly estimated
yaw.

A time graph of the lower left leg orientation during test number 6 is shown
in figure 5.35. Although the filter is able to keep up with the knee flexion and
leg lifting actions as indicated by the respective downward and upward peaks
in the roll graph, these movements are not tracked entirely as the amplitude
is smaller than the optical output indicates. As was the case for the the fourth
test, the fact that the filter is unable to reach the final value introduces errors
on the other two angle estimates.

Figure 5.36 depicts the orientation of the left upper arm during upper body
movements including arm lifting, elbow bending and upper torso movements.

224 Measurements

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40

60

Time [s]

R
ol

l
A

ng
le
φ

[◦]
Inertial
Optical

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40

60

Time [s]

P
it

ch
A

ng
le
θ

[◦]

Inertial
Optical

0 2 4 6 8 10 12 14 16 18 20
0

60

120

180

240

300

360

Time [s]

Ya
w

A
ng

le
ψ

[◦]

Inertial
Optical

Figure 5.32: Left upper leg orientation angles during test 2.

The graphs of all three angles seem to correspond pretty well, although the
mean absolute error listed in table 5.8 indicates errors around 8◦ on roll and
pitch and 15◦ on yaw. Note that the jumps of 180◦ at the end of the sequence
in both roll and yaw are due to the fact that the angles are reduced to a
unique set. Since pitch is limited to [−90◦, 90◦[, values outside this range
trigger these jumps.

The left lower leg roll angle during fast knee flexion has been plotted in

Full Body Tracking 225

0 2 4 6 8 10 12
−30

−20

−10

0

10

20

Time [◦]

R
ol

l
A

ng
le
φ

[◦]
Inertial
Optical

0 2 4 6 8 10 12

−30

−20

−10

0

10

20

Time [◦]

P
it

ch
A

ng
le
θ

[◦]

Inertial
Optical

0 2 4 6 8 10 12
0

60

120

180

240

300

360

Time [◦]

Ya
w

A
ng

le
ψ

[◦]

Inertial
Optical

Figure 5.33: Lower torso orientation angles during test 3.

figure 5.37. While the filter was able to keep up with the knee flexion in test 6,
this is not the case for test 8 where two flexions per second can be seen in the
graphs. The roll angle seems to change somewhat, but the entire amplitude
is never reached.

Since the filter is not up to the task of tracking high speed motions, as was
seen by the graphs for running and also fast knee flexion, it might be more
appropriate to tune the filter for better tracking of slower movements. Reducing

226 Measurements

0 5 10 15 20
−70

−55

−40

−25

−10

5

Time [s]

R
ol

l
A

ng
le
φ

[◦]

Inertial
Optical

0 5 10 15 20−40

−20

0

20

40

60

Time [s]

P
it

ch
A

ng
le
θ

[◦]

Inertial
Optical

0 5 10 15 20
0

60

120

180

240

300

360

Time [s]

Ya
w

A
ng

le
ψ

[◦]

Inertial
Optical

Figure 5.34: Right upper arm orientation angles during test 4.

the feedback parameter τ results in better tracking for several tests, but the
error on fast movements on the other hand increases. With the decrease of the
feedback, the measurement noise may also be reduced, meaning that motion
disturbance might again have a larger influence.

Another way to improve the performance of the filter can be obtained by
adjusting the system model for the type of movement that is executed. The
impact of the foot hitting the ground during walking or running for example

Full Body Tracking 227

0 5 10 15 20 25

-100

50

0

50

100

Time [s]

R
ol

l
A

ng
le
φ

[◦]
Inertial
Optical

0 5 10 15 20 25

−20

0

20

40

60

Time [s]

P
it

ch
A

ng
le
θ

[◦]

Inertial
Optical

0 5 10 15 20 25
0

60

120

180

240

300

360

Time [s]

Ya
w

A
ng

le
ψ

[◦]

Inertial
Optical

Figure 5.35: Left lower leg orientation angles during test 6.

is a very repetitive and maybe even slightly predictable error source. In this
case however, classification of movements forms a new challenge.

As a final remark it should be pointed out that the error on the orientation
output of nodes assigned to the torso are generally lower than the errors found
on the limb orientation. The reason is logically found in the fact that these
nodes are not subjected to large accelerations as the limb nodes are. This
observation justifies the choice made in chapter 4 to designate one of these
nodes as the root node for drawing the stickman. Since the orientation of the

228 Measurements

0 5 10 15 20 25 30

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l
A

ng
le
φ

[◦]
Inertial
Optical

0 5 10 15 20 25 30
−60

−40

−20

0

20

40

60

80

Time [s]

P
it

ch
A

ng
le
θ

[◦]

Inertial
Optical

0 5 10 15 20 25 30
0

60

120

180

240

300

360

Time [s]

Ya
w

A
ng

le
ψ

[◦]

Inertial
Optical

Figure 5.36: Left upper arm orientation angles during test 7.

lower torso node is simply not corrected in the human model, the error is at
least lower than when a lower leg node would have been chosen. Note that
this information could also be used to determine better models for each of the
limbs separately in stead of using the same system model for all of them.

5.3.3 Treadmill Exercises

Since the optical system was unable to track the entire motion during the
walking and running experiments due to the fact that the test subject was

Full Body Tracking 229

0 2 4 6 8 10 12 14 16 18
−140

−120

−100

−80

−60

−40

−20

0

20

40

60

Time [s]

R
ol

l
A

ng
le
φ

[◦]

Roll Angle During Quick Knee Flexion

Inertial
Optical

Figure 5.37: Roll angle on the lower left leg during test 8.

out of the tracking space, additional experiments have been conducted where
walking and running exercises are performed on a treadmill. This time, third
generation MARG nodes were used for data gathering such that angular rate
measurements are also available. This allows to apply both the MFG and
MARG filters to the sequences and compare the output to each other, and
to the optical system. Ten nodes were applied to the test subject’s body, as
there were only this many available. However, both torso nodes did not hold
through the entire test. Therefore their output will not be considered here.

Although the experiment was executed on a different floor, it was still
conducted in the same building as the previous test, meaning that the metal
walls were also present. In fact, a calibration of the magnetic sensors has
been executed at this time, within the test room, which indicated that the
earth magnetic field magnitude is reduced to two thirds compared to our own
test lab. Hence, small errors on the signals automatically deteriorate the filter
performance, certainly for the heading output.

An attempt was made to synchronise the data captures by using a trigger
and starting both programs simultaneously, but in the end, this did not seem
to work. Therefore it was necessary to resort to human synchronisation after a
countdown using a clock present in the room. This also means that the delay
between the systems may again not be determined from the resulting output
sequences.

The experiment that is considered here is a ramped cycle that is used to
determine the transition point between walking and running. The treadmill

230 Measurements

starts moving slow and gradually increases the speed until the subject is
required to run, this state is maintained for a while and afterwards the speed
is again decreased. The capture programs were started together with the
treadmill. This was however not beneficial for the inertial tracking system.
Since the initial estimates for the Kalman filter generally do not correspond
to the actual state, a transient period is expected when captures are started.
As the test subject was already in motion, this transient takes place during
dynamic changes and results in suboptimal performance. In order to address
this issue, the initial state of the filter is set to the offset values determined
from the calibration procedure of the stickman. As explained in section 4.3.2,
offset are needed to remove the influence of misalignment between the sensor
node and the bone. In the reference stance, these offsets can be determined
and it is expected that these values are closer to the actual orientation when
the person is already in motion.

Figure 5.38 shows the inertial filter estimates versus the optical system
output for the lower left leg. This bodypart has been chosen as it is moving
extensively during walking and running exercises and is expected to be very
hard to track using inertial sensors, which is clearly reflected by the graphs.
The walk-to-run transition is approximately found at the 12 s time mark, while
the inverse transition takes place at about the 25 s mark.

From the graphs, it is easily understood that the yaw and pitch angles are
poorly estimated compared to the golden standard. Generally, the amplitude
of both signals is a lot larger. The roll angle estimates are better and seem
to generate a signal with approximately the same amplitude and frequency.
During the running part, the inertial system however looses track and exhibits
a slightly smaller amplitude, though the frequency remains correct.

Although the inertial system seems to have a very hard time in supplying
qualitative orientation estimates, it is more important to also analyse the
differences between the MFG and the MARG tracker. In general, the MARG
curves seem smoother, which is also expected given the availability of angular
rate information. The biggest difference however, is found in the running part
of the experiment. Here, the MFG filter starts experiencing drift on its yaw
estimate, resulting in bigger errors on the pitch estimate as well. The MARG
filter on the other hand does not seem to be bothered with the transition
except for a slight increase in the instant pitch error.

The poor performance of the inertial estimators can mainly be attributed to
motion disturbance on the accelerometer signal. Figure 5.39 displays a time
graph of the magnitude of the sensor readings. Clearly, the mean magnitude
of the acceleration lies above the expected unity value. This indicates that
influence of motion disturbance on the filter output has been underestimated.
During the running operation, the magnitudes seems to be rather close to
1.75 g. Note that the average magnitude of the magnetic field seems to have

Full Body Tracking 231

0 5 10 15 20 25 30 35
−60

−40

−20

0

20

40

60

Time [s]

R
ol

l
A

ng
le
φ

[◦]

MFG
MARG
Optical

0 5 10 15 20 25 30 35
−20

−10

0

10

20

30

40

50

60

Time [s]

P
it

ch
A

ng
le
θ

[◦]

MFG
MARG
Optical

0 5 10 15 20 25 30 35
−150

−100

−50

0

50

100

150

Time [s]

Ya
w

A
ng

le
ψ

[◦]

MFG
MARG
Optical

Figure 5.38: Left lower leg orientation angles.

been overestimated as well, although a calibration was executed in the very
same room. This indicates that the uniformity of the magnetic field within
the room is clearly not very good. Also, the metal contained in the treadmill
structure might have an influence here.

232 Measurements

0 5 10 15 20 25 30 35
0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

Time [s]

M
ag

ni
tu

de

Magnitude of the Sensor Readings

Acceleration [g]
Magnetic Field [a.u.]

Figure 5.39: Magnitude of the sensor readings of the sensor node associated to the
lower left leg.

5.4 Conclusion

A quantitative analysis of the performance of the tracking algorithm is per-
formed by placing the nodes on a rotational stage and comparing the estima-
tions with the angular position. Three types of tests are used: a step test to
determine the linearity, a block test for the step response and a jogging test
to obtain the maximal traceable angular speed and the delay of the filter. A
distinction was also made between heading and tilt estimation, since there is
clearly a difference between both.

The linearity of the filter was greatly affected by the quality of the cali-
bration, especially for the heading case since the magnetic field of the earth
is very weak. Poor calibration quickly leads to systematic linearity errors
with a sinusoidal shape. The step response of the filters again point out that
the Euler EKF underperforms quite a bit. The other filters all display a 10 %
settling time of approximately 480 ms for a heading step and 460 ms for tilt.
Keeping in mind the 400 ms travel time of the rotational stage, this leads to
step delays below 100 ms. The maximum angular speed for tilt rotations that
can be traced by all filters except for the Euler EKF is at least higher than
the maximum speed of the rotational stage, i.e. 720 ◦/s. In the heading case,
the Euler SPKFs manage up until 600 ◦/s, while the quaternion filters reach
as high as 650 ◦/s. The delay during motion is around 125 ms for each of the
well performing filters and for angular speeds that are tracked with a mean
absolute error below 15◦.

Conclusion 233

The same tests have also been used to determine the performance of the
embedded quaternion EKF implementation and the MARG filter. In the step
response, the embedded filter suffers from a higher settling time for heading
rotations, but for tilt the filter is in fact even slightly faster due to minor
overshoot. The maximum traceable speed for heading also turns out to be
lower with a delay that amounts to 180 ms. The MARG filter displays a
smoother and faster step response than the MFG filter due to the presence
of angular rate information. However, small calibration errors cause the step
to be over- or underestimated resulting in a slow evolution to the actual final
value. For both heading and tilt rotations, the MARG filter is also able to
keep track of an angular speed up to at least 720 ◦/s.

A more qualitative analysis of the functionality of the entire system was
obtained by performing full body experiments. A test subject was equipped
with both the inertial sensor nodes and the reflective markers of an opti-
cal tracking system serving as a reference. The system operation was first
validated in a dance demonstration. Screen captures of both the stickman
visualisation and a video recording confirm that posture can be reconstructed.
In a second test consisting of various movement exercises, the orientation of
body segments is extracted from the captured data streams of the optical sys-
tem and a comparison can be made between the optical and inertial estimates.
From the mean absolute error, it can be concluded that the yaw angle gen-
erally exhibits larger errors. Naturally, this is a direct consequence of the
coincidence of gravity with the Z-axis of the reference frame. Comparing the
time graphs of the Euler angles further demonstrates that the system is able
to keep up with the optical system as long as the speed of the movements is
limited. Fast knee flexion and quickly turning around e.g. are easily missed.
In a final running and walking experiment on a treadmill, the main source of
errors is observed. Motion disturbance causing the accelerometer to measure
much more than just gravity causes the filter estimates to deteriorate. With
the absence of angular rate data, the MFG filter suffers from this effect during
the running parts of the experiment, while the MARG filter response is more
uniform.

234 References

References

[1] Newport. URB100CC, High-Speed Belt-Driven Rotation Stage. Irvine, CA,
USA, 2010. http://assets.newport.com/webDocuments-EN/images/14964.
pdf.

[2] Newport. SMC100CC & SMC100PP, Single-Axis Motion Controller/Driver

for DC or Stepper Motor. Irvine, CA, USA, 2005. http://assets.newport.
com/webDocuments-EN/images/14444.pdf.

[3] D. Grundgeiger. Programming Visual Basic .NET. O’Reilly Media, May
2002.

[4] L. Taerwe. Waarschijnlijkheidsrekening en Statistiek. Lecture Notes, 2003.

[5] M. Demey, M. Leman, L. De Bruyn, F. Bossuyt, and J. Vanfleteren. The

Musical Synchrotron: using Wireless Motion Sensors to Study how Social

Interaction Affects Synchronization with Musical Tempo. In Proceedings
of the International Conference on New Interfaces for Musical Expression,
Genova, Italy, 2008.

[6] P.-J. Maes, M. Leman, M. Lesaffre, and M. Demey. From Expressive Gesture

to Sound: The Development of an Embodied Mapping Trajectory Inside a

Musical Interface. Journal on Multimodal User Interfaces, pages 67–78,
2010.

[7] M. Grachten, M. Demey, D. Moelants, and M. Leman. Analysis and Auto-

matic Annotation of Singer’s Postures During Concert and Rehearsal. In
Proceedings of the Sound and Music Computing Conference, pages 191–
198, 2010.

[8] V. Segers, M. Lenoir, P. Aerts, and D. De Clercq. Kinematics of the Tran-

sition Between Walking and Running when Gradually Changing Speed.
Gait & Posture, 26(3):349–361, 2007.

[9] I. Van Caekenberghe, K. De Smet, V. Segers, and D. De Clercq. Overground

Versus Treadmill Walk-to-Run Transition. Gait & Posture, 31(4):420–428,
2010.

http://assets.newport.com/webDocuments-EN/images/14964.pdf
http://assets.newport.com/webDocuments-EN/images/14964.pdf
http://assets.newport.com/webDocuments-EN/images/14444.pdf
http://assets.newport.com/webDocuments-EN/images/14444.pdf

6
Conclusion & Outlook

The final chapter discusses the main accomplishments of this work and possible
improvements that may be added in the future.

6.1 General Discussion

In this work, the design of a gyroless inertial tracking system is presented. By
comparing accelerometer and magnetometer information to respectively earth’s
gravity and magnetic field, driftless absolute orientation is obtained. While
traditionally angular rate measured by gyroscopes is integrated offering a
first estimate, this sensor is deliberately omitted in order to drastically reduce
the current consumption. Furthermore, this approach allows the use of smaller,
single board sensor nodes with a restricted height and enables to increase the
unobtrusiveness by applying advanced packaging techniques. Both of these
aspects clearly enhance the mobile nature of the tracking system.

The system comprises of several parts that contribute to the functional-
ity. Sensor data originates from commercial MEMS devices included in the
hardware design of a sensor node that also contains a processing unit and a
wireless interface. Embedded software running on the microcontroller obtains
the data from the sensors and implements a communication protocol that al-
lows the data to be transferred reliably to a base station, which in turn passes
it through to a backend computer. Finally, software is used to calculate an
orientation estimate from the received data and a visualisation is built on the
monitor. Each of these parts needed to be developed and properly tested.

236 Conclusion & Outlook

The Kalman filter was selected to serve as a sensor fusion algorithm for
obtaining an orientation estimate. Several flavours of the filter architecture
were applied to the problem at hand using both Euler angle and quaternion
representation. Additional features, such as feedback and adaptive noise co-
variance were added to improve the performance in the absence of angular
rate information. All parameters of the filters were estimated using real life
motion captures from an optical tracking system in order to ensure an ade-
quate modeling of the problem. Simulations of the estimation algorithm were
executed to test its characteristics and determine an estimate for the adap-
tive parameters in the system. Step response simulations revealed that the
filter behaves differently for tilt and heading steps as was expected due to
the coincidence of the Z-axis and the gravity vector. Settling times ranged
from 30 ms for tilt to 60 ms for heading changes. Noise response simulations
with both simulated and real noise showed that the variance on the output
signals was ten times higher with the latter due to poor whiteness. However,
pre-filtering the sensor output reduced this variance back to approximately the
same level as the variance of the simulated noise response. Finally, motion
disturbance simulations, where a disturbing sinusoidal signal is added to one
of the accelerometer outputs, confirmed the efficiency of the adaptive filtering
approach. A value of 1000 for the adaptive filtering parameter ζ significantly
reduced the mean square error on the output of both the Euler and quaternion
type filters.

The sensor node hardware design first focused on creating microsystems
that consume very little power. Later, user comfort was increased by using
flexible board technology and chip thinning. Each of the nodes includes a
microcontroller connected to both three dimensional, fully integrated sensors
and an RF transceiver. The functionality was carefully implemented in em-
bedded software to further minimise power consumption. To this extend, a
fully plug and play, wireless ad hoc network protocol was introduced based
on a master and slave hierarchy and a TDMA like network scheme. The role
of a node and the timeslot it occupies is determined at runtime according to
availability. Synchronisation in the network is provided by the package trans-
missions of the master. Therefore, its presence is carefully monitored by the
slaves and upon failure, one of them will take on the master role. Additional
mechanisms ensure that only one master is active and a timeslot is only used
by a single slave. In an attempt to reduce the computational stress on the
backend computer, the orientation estimator was also implemented in firmware
using a fixed point number format. The microcontroller’s hardware multiplier
and Newton’s approximation method allowed to implement both multiplication
and square root operations efficiently. Matrix symmetry further reduced the
number of instructions required for each iteration. Finally, third generation
sensor nodes were able to calculate an orientation estimate within the avail-

General Discussion 237

able 10 ms timeframe and a single base station could accommodate a maximum
of 19 nodes while each of them consumes an average current of 6.5 mA.

Aside from implementing the estimation algorithm when this is not yet
completed by the microcontroller, the computer software allows visualisation
by means of a graph, a rotating cube or an animated stickman. For the
latter, a recursive tree structure was built from bone class objects that are
interconnected by joints. Using the swing-twist parameterisation, joint limits
were defined in order to correct anatomically impossible postures to feasible
ones. Bones were then categorised according to the amount of freedom allowed
by the joint connecting them to their parent. Free bones simply copy the
orientation given by their associated sensor node, while fixed bones follow
the orientation of their parent. Single plane constraint bones are connected
through a hinge type joint allowing the swing to position the bone into a half-
plane. A ball-and-socket joint leads to a multiple constraint bone where the
swing restrictions are modeled by a cone of forbidden directions. The twist of
the corrected bones is bound separately to fixed values. Smooth visualisations
were obtained by tolerating small deviations on each of the restrictions. The
limits were chosen fairly liberal and screenshots have shown the functionality
of the model.

Using a uniaxial rotational stage, the tracking performance for both tilt
and heading rotations of a single node was obtained. The linearity of the
filters was determined to depend on the accuracy of the calibration since the
error was systematic, especially for the heading. The step response showed a
delay of 80 ms for heading changes and 60 ms for tilt. A jogging test finally
revealed that tilt rotations up to at least 720 ◦/s could be tracked with a delay
around 120 ms and a mean absolute error below 10◦. For the heading case,
cycle slips occurred when the angular speed exceeded 600 ◦/s. A qualitative
assessment of the entire system functionality was obtained by performing full
body tracking experiments. From a dance demonstration, video captures and
stickman visualisations validated the system operation. In other experiments,
an optical system served as golden standard given its proven track record. A
comparison of the output data showed that the inertial system was capable of
tracking many of the movements of the test subject, as long as the influence
of motion disturbance was restricted. Clearly, the absence of the gyroscopes
means that only relatively slow motion can be tracked accurately, meaning
that the system could be interesting for revalidation applications. Even with
faster movement however, the type of action may still be determined from
the output information. As a result, the gyroless trackers could certainly
be used in gaming applications where high level classification of motion is
of intrest. Furthermore, if very long capture sessions are required, the low
current consumption of the MFG nodes is a clear asset.

238 Conclusion & Outlook

6.2 Future Work

Throughout the entire world, one important constant exists within research:
the work is never done, there is always room for improvement. Therefore, this
final section is devoted to some of these aspects.

The filters that have been developed within this work use adaptive tech-
niques to address the issue of disturbance on the sensor signals. However,
full body experiments have clearly shown that motion disturbance has a big-
ger influence than initially expected. One way of improving the behaviour of
the filter is to attempt to estimate the acceleration due to motion. However,
this would require an additional part in the state vector containing this accel-
eration component which increases the complexity of the filter significantly.
Furthermore, a model would be needed in order to estimate the acceleration
which might not be easy to obtain given the absence of gyroscopes. A dif-
ferent approach is to take the estimation one level higher. Using knowledge
about the location of a sensor node on the body and combining this with a
more elaborate human model allows to estimate the errors and motion distur-
bance more precisely and individually for each node. One could attempt to
detect the general motion of the person and adapt the parameters of the filter
according to that specific movement. During a walking exercise for example,
shocks on the accelerometer values are expected when the user’s foot hits the
ground. In this case, different models would need to be developed and addi-
tional mechanisms are needed to detect which model is appropriate at that
specific time.

Concerning the hardware, the first steps towards the use of flexible board
technology and component integration have already been taken. Logically,
further work in this area includes the actual production of this type of nodes.
However, aside from the integration of the microcontroller and the RF trans-
ceiver, the sensors might also be considered for UTCP. Given the fact that
these devices mostly consist of both a sensor MEMS chip and a silicon con-
troller implementing the interface, this still remains to be a challenge. On
the base station side, additional work includes the network of networks im-
plementation where motion capturing of multiple persons could be enabled
by having each of the individuals carry around their own intermediate access
point. All of these access point could then be networked separately from the
sensor networks to communicate to the backend. This would allow that the
sensor nodes themselves use less power for wireless transmission since the
distance to be covered is clearly lower. The range of the system then depends
on the quality of the link from the access points to the backend. However,
the downside is that these access points are more power hungry and would
probably not be extremely unobtrusive. Another approach that does not suffer
from this is to place multiple base stations distributed in the environment.

Future Work 239

The communication to the backend could in this case be wired if feasible or
wireless if required.

When considering different network architectures for the base stations, the
sensor network protocol could also require adaptations. The efficiency of the
protocol as it has been described in chapter 3 lies in the fact that data is
only transferred from the nodes to the base station. However, this feature
is at the same time also its greatest weakness. Small adaptations cannot
be completed without fully reprogramming the nodes. When nodes need to
be calibrated e.g. this requires manual work from the user since they are
programmed to continuously send data to the base station. Any change to this
way of working will however require to completely redefine the entire protocol.
Two-way communication would be needed and the base station will need to
actively participate in the network. This enables that the base station starts
controlling the network and keeps track of its health. Base stations might also
direct nodes to transmit their information to a different base station in order
to maintain a better link quality. However, the price to pay is some loss in
efficiency of the data transfer which is bound to decrease due to the fact that
valuable time is lost.

Finally, some improvements to the human model might also be consid-
ered. As described in chapter 4, the model used at the moment corrects the
orientation of a bone by considering the orientation of the parent as correct.
Furthermore, one of the bones, denoted as the root, always remains uncor-
rected since otherwise certain poses would generally remain impossible. A
different approach is to consider the entire posture that results from the di-
rect application of the estimated orientation from the nodes and to determine
the most likely corrections that are needed to obtain an anatomically feasi-
ble posture. Furthermore, the posture that was determined in the previous
update might also be considered. Note that some of the bones are still more
likely to be corrected more than others, since they are prone to bigger errors
due to motion disturbance. Another possible improvement consists of using
the human model information to provide feedback to the orientation estimator
as was mentioned in the beginning of this section. Major corrections on the
orientation of a certain bodypart e.g. might indicate that the node associated
with this bodypart is exhibiting motion disturbance. Shocks during walking
can also be predicted as they occur when the anchorpoint of the stickman with
the floor is transferred from the endpoint of one leg to the other.

A
Quaternion Decomposition

A.1 Swing-Twist Decomposition

In this appendix, the mathematical derivation for the decomposition of a quater-
nion into two separate quaternions is given. One component is called the
swing as it describes the change of one direction to the next, while the other
component is referred to as the twist as it corresponds to a rotation about
the direction vector. Both components describe rotations that are essentially
executed around mutually perpendicular axes.

In the first section, it is assumed that the twist axis corresponds to the Z-
axis, while the swing axis lies in the XY-plane. The second section describes
the decomposition in the more general case where the twist axis is known but
corresponds to an arbitrary axis.

A.2 Z-Axis Twist

A rotation quaternion q will be decomposed into two subquaternions, a swing
quaternion qs and a twist quaternion qt :

qs ⊗ qt = q (A.1)

Right multiplying both sides by the inverse of q and left multiplying be
the inverse of qs results in:

242 Quaternion Decomposition

qt ⊗ q−1 = q−1
s (A.2)

Since all quaternions represent a rotation, the inverse can also be replaced
by the conjugate:

qt ⊗ q∗ = q∗s (A.3)

The full rotation quaternion q represents a random rotation in 3D space.
This quaternion is to be decomposed into a twist quaternion qt , which only
contains a rotation around the Z-axis and a swing quaternion qs, containing
the direction component. Each of the quaternions can be written as a sum of
coefficients:

q = w + x i + y j + z k (A.4a)

qt = wt + zt k (A.4b)

qs = ws + xs i + ys j (A.4c)

Rewriting (A.3) by means of the coefficients results in:

ws = wt w + zt z (A.5a)

−xs = −wt x + zt y (A.5b)

−ys = −wt y − zt x (A.5c)

0 = −wt z + zt w (A.5d)

The norm of each of the quaternions must also equal unity, as the quater-
nions represent a rotation:

|q|2 = w2 + x2 + y2 + z2 = 1 (A.6a)

|qs|2 = w2
s + x2

s + y2
s = 1 (A.6b)

|qt |2 = w2
t + z2

t = 1 (A.6c)

Substituting (A.5a) – (A.5c) in (A.6b) results in:

(wt w + zt z)
2 + (wt x − zt y)2 + (wt y + zt x)2 = 1 (A.7)

Expanding the squares yields:

Z-Axis Twist 243

w2
t w

2 + 2w z wt zt + z2
t z

2

+ w2
t x

2 − 2 x ywt zt + z2
t y

2

+ w2
t y

2 + 2 x ywt zt + z2
t x

2 = 1 (A.8)

Scrapping and combining terms:

(

w2 + x2 + y2
)

w2
t +

(

x2 + y2 + z2
)

z2
t + 2w z wt zt = 1 (A.9)

Using (A.6a) and (A.5d) further simplifies the equation to:

(

1 − z2
)

w2
t +

(

1 − w2
)

z2
t + 2 z2

t w
2 = 1 (A.10)

Using (A.6c) leads to:

(

1 − z2
) (

1 − z2
t

)

+
(

1 + w2
)

z2
t = 1 (A.11)

Further calculus reveals:

z2
t =

z2

z2 + w2
(A.12)

Combining (A.12) and (A.5d) finally results in:

wt =
±w√

w2 + z2
(A.13a)

zt =
± z√

w2 + z2
(A.13b)

Where the duality in sign clearly reflects the fact that both a unit quater-
nion and its negative represent the same rotation.

Finally, the swing quaternion can also be calculated:

qs = q ⊗ q∗t (A.14)

Note however that the decomposition introduces a singularity. Equations
(A.13a) and (A.13b) result in an exception when both z and w are zero. This
can be rephrased using the angle-axis formalism for quaternions:

w = cos
(

φ
2

)

= 0 (A.15a)

z = vz sin
(

φ
2

)

= 0 (A.15b)

244 Quaternion Decomposition

From these equations, the problem clearly arises when the following con-
ditions are met:

φ = 180◦ (A.16a)

vz = 0 (A.16b)

A quaternion fulfilling these conditions corresponds to a 180◦ rotation
around an axis in the XY-plane, or a 180◦ swing rotation. In this case, the twist
angle is free to choose, a different choice will only lead to a different swing
quaternion. This can easily be understood with a simple example. Suppose
q represents a 180◦ rotation around the X-axis. A simple decomposition of
this quaternion would be to have zero twist and qs equal q. Yet, another
valid decomposition is obtained by choosing the twist angle to be 180◦ and
assigning a 180◦ rotation around the Y-axis to qs:

qs ⊗ qt = [0, 0, 1, 0] ⊗ [0, 0, 0, 1] (A.17)

= [0, 1, 0, 0] (A.18)

= q (A.19)

An infinite number of other decompositions exist resulting in the same
combined rotation. Testing for this singularity and simply choosing a twist
angle before calculating the swing quaternion is a common solution.

A.3 Arbitrary Twist

In this section, no limitations are put forward for the direction of the twist axis
but it is assumed that the axis is known. Using the axis-angle formalism, both
the quaternions can be rewritten as follows:

qs = [ws, vs] =
[

cos
σ

2
, us sin

σ

2

]

(A.20)

qt = [wt , v t] =
[

cos
τ

2
, ut sin

τ

2

]

(A.21)

Where ut and us respectively represent a unit vector along the twist and
swing axes. Substituting these expressions in (A.1) yields:

q = qs ⊗ qt (A.22)

= [ws wt − v t · vs, ws v t + wt vs + vs × v t] (A.23)

= [ws wt , ws v t + wt vs + vs × v t] (A.24)

Arbitrary Twist 245

In the calculations, the fact is used that the rotation axes of the twist
and swing quaternion are mutually perpendicular and that the scalar product
of two perpendicular vectors is zero. A new quaternion qp is defined as the
projected version of the initial quaternion q on the twist axis:

qp = [w, (v · ut) ut] (A.25)

= [ws wt , (ws v t · ut + wt vs · ut + (vs × v t) · ut) ut] (A.26)

=
[

ws wt , ws |ut |2 sin
τ

2
ut

]

(A.27)

= [ws wt , ws v t] (A.28)

Here, the fact is used that the vector product of two vectors yields a new
vector that is perpendicular to both arguments, thus its scalar product with a
vector parallel to one of the arguments is always zero. By normalising this
quaternion, the following result is obtained:

qp
∣

∣qp
∣

∣

=
[ws wt , ws v t]

√

w2
s w

2
t + w2

s |v t |2
(A.29)

=
ws [wt , v t]

ws

√

w2
t + |v t |2

(A.30)

=
[wt , v t]

|qt |
(A.31)

= [wt , v t] (A.32)

= qt (A.33)

This shows that the normalised version of the projected quaternion equals
the twist quaternion. Since qp can be obtained using only the original quater-
nion and the axis of twist rotation, qt can thus be calculated for any arbitrary
twist axis. The swing quaternion can still be calculated using (A.14).

As was the case for the decomposition with a twist around the Z-axis, a
singularity arises when the quaternion consists of a pure swing over 180◦.
This can best be understood by keeping in mind that the swing quaternion of
such a decomposition will always have a zero scalar part, from which immedi-
ately follows that the projected quaternion equals zero and the normalisation
is actually a division by zero. Detecting the singularity can hence also be
executed by checking if the projected quaternion is not to close to the zero
quaternion, in which case the twist quaternion can be arbitrarily chosen.

B
Second Generation Firmware

This appendix contains the firmware of the second generation motion tracking
sensor nodes.

B.1 Hardware

Code Segment B.1: Hardware.h

#de f ine F_CPU 7372800UL

#inc lude <av r / eeprom . h>
#inc lude <av r / i n t e r r u p t . h>
#inc lude <av r / s l eep . h>
#inc lude <u t i l / delay . h>

#de f ine low (por t , p in) (p o r t &= ~_BV (p in))
#de f ine high (por t , p in) (p o r t |= _BV (p in))

/ /#d e f i n e FIRST

/ /CYWM pins
#de f ine CYWM_SCK PB5 / / Output
#de f ine CYWM_MISO PB4 / / I n p u t
#de f ine CYWM_MOSI PB3 / / Output
#de f ine CYWM_nSS PD7 / / Output

#de f ine CYWM_nPD PC1 / / Output
#de f ine CYWM_nRESET PD3 / / Output
#de f ine CYWM_IRQ PD2 / / I n p u t

248 Second Generation Firmware

#de f ine CYWM_PACTL PB0 / / I n p u t
#de f ine CYWM_RXPA PB2 / / I n p u t
#de f ine CYWM_TXPA PD4 / / I n p u t

#de f ine CYWM_nSS_PORT PORTD

/ / LED Pin
#de f ine LED_PIN PD1 / / Output
#de f ine LED_PORT PORTD
#de f ine LED_DDR DDRD

/ / Magnetometer Reset p in
#de f ine MAGRESET PD0 / / r e s e t p in magnetometer

vo id in i tLEDPort (vo id) ;
vo id setLED (vo id) ;
vo id clearLED (vo id) ;
vo id toggleLED (vo id) ;
vo id Maste r_T ime r_ In i t (vo id) ;
vo id S l a v e _ T i m e r _ I n i t (unsigned char TimeSlot) ;
vo id Timer_Start_Up (unsigned char Number) ;
vo id Timer_Master_Check (vo id) ;
vo id Timer_Slave_Scan (vo id) ;
vo id Reset_Timer (vo id) ;
vo id I n i t _ P i n _ i n t e r r u p t (vo id) ;
vo id P o r t _ I n i t (vo id) ;
vo id ADC_Init (vo id) ;

Code Segment B.2: Hardware.c

#inc lude " hardware . h "
#inc lude <s t d l i b . h>

vo id in i tLEDPort (vo id)
{

clearLED () ;

/ / s e t PB1 as ou tpu t
LED_DDR |= (1<<LED_PIN) ;

}

/ / sw i t ch the LED on
vo id setLED (vo id)
{

/ / s e t to i n a c t i v e / LED i s ON
LED_PORT &= ~(1<<LED_PIN) ;

}

/ / sw i t ch the LED o f f
vo id clearLED (vo id)
{

/ / s e t to a c t i v e / LED i s o f f
LED_PORT |= (1<<LED_PIN) ;

}

vo id toggleLED (vo id) {

Hardware 249

LED_PORT ^= (1<<LED_PIN) ;
}

vo id Maste r_T ime r_ In i t (vo id)
{

/ / I n i t i a l i z e 16 b i t coun te r1 :
TCCR1A = 0x00 ;

/ / c l k s e t t i n g : c l k _ I /O/8 and CTC mode : up to ICR
TCCR1B = 0x1A ;

/ / i n t e r r u p t on count to 9216 = 10ms
ICR1H = 0x24 ;
ICR1L = 0x00 ;

/ / Enable ICR compare i n t e r r u p t i n t e r r u p t
TIMSK1 = 0x20 ;

}

vo id S l a v e _ T i m e r _ I n i t (unsigned char TimeSlot)
{

/ / I n i t i a l i z e 16 b i t coun te r1 :
TCCR1A = 0x00 ;

/ / c l k s e t t i n g : c l k _ I /O/8 and CTC mode : up to ICR
TCCR1B = 0x1A ;

/ / i n t e r r u p t on count to 9216 = 10ms
ICR1H = 0x24 ;
ICR1L = 0x00 ;

/ / i n t e r r u p t depends on t i m e s l o t
OCR1AH = 0x03 * TimeSlot ;
OCR1AL = 0x00 ;

/ / i n t e r r u p t on count to 7680 ~= 8.33 ms
OCR1BH = 0x1E ;
OCR1BL = 0x00 ;
TIMSK1 = 0x00 ;

}

vo id Timer_Start_Up (unsigned char Number)
{

/ / I n i t i a l i z e 16 b i t coun te r1 :
TCCR1A = 0x00 ;

/ / c l k s e t t i n g : c l k _ I /O/64 and CTC mode : up to ICR
TCCR1B = 0x1B ;
ICR1H = 0x40 ;
ICR1L = 0x00 ;
TIMSK1 = 0x20 ;

}

vo id Timer_Master_Check (vo id)
{

/ / I n i t i a l i z e 16 b i t coun te r1 :

250 Second Generation Firmware

TCCR1A = 0x00 ;

/ / c l k s e t t i n g : c l k _ I /O/64 and CTC mode : up to ICR
TCCR1B = 0x1B ;

/ / i n t e r r u p t on count +- 100 ms
ICR1H = 0x30 ;
ICR1L = 0x00 ;
TIMSK1 = 0x20 ;

}

vo id Timer_Slave_Scan (vo id)
{

/ / I n i t i a l i z e 16 b i t coun te r1 :
TCCR1A = 0x00 ;

/ / c l k s e t t i n g : c l k _ I /O/64 and CTC mode : up to ICR
TCCR1B = 0x1B ;

/ / i n t e r r u p t on count +- 100 ms
ICR1H = 0x30 ;
ICR1L = 0x00 ;
TIMSK1 = 0x20 ;

}

vo id Reset_Timer (vo id)
{

TCCR1B = 0x00 ;
TCNT1 = 0 ;

}

vo id I n i t _ P i n _ i n t e r r u p t (vo id)
{

/ / Al low i n t e r r u p t (r i s i n g edge) on INT0 , IRQ f rom RF ch ip
EICRA = 0x03 ;
EIMSK = 0x00 ;

}

vo id P o r t _ I n i t (vo id)
{

/ / p o r t I /O d i r e c t i o n s
DDRB = _BV (CYWM_SCK) | _BV (CYWM_MOSI) |

_BV (CYWM_RXPA) | _BV (CYWM_PACTL) ;
DDRC = _BV (CYWM_nPD) ;
DDRD |= _BV (CYWM_nSS) | _BV (CYWM_nRESET) |

_BV (CYWM_TXPA) | _BV (MAGRESET) | _BV (LED_PIN) ;
clearLED () ;

}

B.2 I2C

Code Segment B.3: I2C.h

vo id I 2CSta r t (vo id) ;

SPI 251

vo id I2CSendData (unsigned char data) ;
unsigned char I2CRece i ve (vo id) ;
unsigned char I2CReceiveNMAK (vo id) ;
vo id I2CStop (vo id) ;

Code Segment B.4: I2C.c

#inc lude " I2C . h "
#inc lude " hardware . h "

vo id I 2CSta r t (vo id)
{

/ / send s t a r t c o n d i t i o n
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN) ;
/ / wa i t f o r comple te
l o o p _ u n t i l _ b i t _ i s _ s e t (TWCR, TWINT) ;

}

vo id I2CSendData (unsigned char data)
{

TWDR = data ;
TWCR = (1<<TWINT) | (1<<TWEN) ;
/ / wa i t f o r comple te
l o o p _ u n t i l _ b i t _ i s _ s e t (TWCR, TWINT) ;

}

unsigned char I2CRece i ve (vo id)
{

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA) ;
/ / wa i t f o r comple te
l o o p _ u n t i l _ b i t _ i s _ s e t (TWCR, TWINT) ;
r e t u r n (TWDR) ;

}

unsigned char I2CReceiveNMAK (vo id)
{

TWCR = (1<<TWINT) | (1<<TWEN) | (0<<TWEA) ;
/ / wa i t f o r comple te
l o o p _ u n t i l _ b i t _ i s _ s e t (TWCR, TWINT) ;
r e t u r n (TWDR) ;

}

vo id I2CStop (vo id)
{

/ / Send s top c o n d i t i o n
TWCR = (1<<TWINT) | (1<<TWSTO) | (1<<TWEN) ; / /TWBR = 50;

}

B.3 SPI

Code Segment B.5: SPI.h

vo id SPI_Write (unsigned char byte) ;

252 Second Generation Firmware

vo id S p i _ I n i t (vo id) ;

Code Segment B.6: SPI.c

#inc lude " SPI . h "
#inc lude " hardware . h "

vo id SPI_Write (unsigned char byte)
{

SPDR = byte ;
/ / Wait f o r SPI t r a n s m i s s i o n comple te
whi le (! (SPSR & (1<<SPIF))) ;

}

vo id S p i _ I n i t (vo id)
{

/ / Setup SPI
SPCR = (1<<SPE) | (1<<MSTR) ;
SPSR |= (1<<SPI2X) ;
h igh (CYWM_nSS_PORT, CYWM_nSS) ;
r e t u r n ;

}

B.4 Fixed Point

Code Segment B.7: FixedPoint.h

s h o r t fpMul t (s h o r t a , s h o r t b) ;

Code Segment B.8: FixedPoint.c

#inc lude " f i x e d P o i n t . h "

s h o r t fpMul t (s h o r t a , s h o r t b)
{

/ / Declare r e t u r n v a r i a b l e
s h o r t c ;

/ / pa r t 1 : a * i n t e g e r pa r t b
c = a * (b >> 1 0) ;

/ / pa r t 2 : a * dec imal pa r t b
f o r (unsigned char i = 0 ; i < 10 ; i ++) {

i f (b & (1 << i)) {
c += (a >> (10 - i)) ;

}
}

/ / Return r e s u l t
r e t u r n c ;

}

Accelerometer 253

B.5 Accelerometer

Code Segment B.9: Acc.h

vo id i n i t _ A c c (vo id) ;
vo id readAcc (vo id) ;

Code Segment B.10: Acc.c

#inc lude " acc . h "
#inc lude " CYWUSB693x . h "
#inc lude " hardware . h "
#inc lude " I2C . h "

vo id i n i t _ A c c (vo id)
{

/ / s e t b i t r a t e r e g i s t e r to 5 , i . e . ~2.7 usec SCK c y c l e t ime
TWBR = 50;

/ / send s t a r t c o n d i t i o n
I 2CSta r t () ;

/ / Send i 2 c address wi th r /w b i t one
I2CSendData (0 x3A) ; / / s e t data byte 00111010

/ / send sub
I2CSendData (0 x20) ;
I2CSendData (0 x97) ;

/ / Send s top c o n d i t i o n
I2CStop () ;

}

vo id readAcc (vo id)
{

/ / I n i t v a r i a b l e s
unsigned char outx_L , outx_H , outy_L , outy_H , outz_L , outz_H ;

/ / Communicate v i a I2C
I 2CSta r t () ;
I2CSendData (0 x3A) ;
I2CSendData (0 xA8) ;
I 2CSta r t () ;
I2CSendData (0 x3B) ;
outx_L = I2CRece ive () ;
outx_H = I2CRece ive () ;
outy_L = I2CRece ive () ;
outy_H = I2CRece ive () ;
ou tz_L = I2CRece ive () ;
outz_H = I2CReceiveNMAK () ;
I2CStop () ;

/ / Wri te va l ue s to s e n d b u f f e r
CYWM_AddToTXBuffer ((((outx_L >>4) & 0x0F) | ((outx_H <<4) & 0xF0))) ;

254 Second Generation Firmware

CYWM_AddToTXBuffer ((((outy_L >>4) & 0x0F) | ((outy_H<<4) & 0xF0))) ;
CYWM_AddToTXBuffer ((((outz_L >>4) & 0x0F) | ((outz_H <<4) & 0xF0))) ;

}

B.6 Magnetometer

Code Segment B.11: Mag.h

#de f ine I2CMAGREAD 0x5D
#de f ine I2CMAGWRITE 0x5C

vo id in i tMag (unsigned char SENSOR) ;
vo id readMag (vo id) ;

Code Segment B.12: Mag.c

#inc lude " mag . h "
#inc lude " CYWUSB693x . h "
#inc lude " I2C . h "
#inc lude " f i x e d P o i n t . h "
#inc lude " hardware . h "
#inc lude " c a l i b r a t i o n . h "

unsigned char CAL0= 0 ; / / Cal bytes
unsigned char CAL1= 0 ; / / Cal bytes
unsigned char CAL2= 0 ; / / Cal bytes
unsigned char CAL3= 0 ; / / Cal bytes
unsigned char CAL4= 0 ; / / Cal bytes
unsigned char CAL5= 0 ; / / Cal bytes
unsigned char CAL6= 0 ; / / Cal bytes
unsigned char CAL7= 0 ; / / Cal bytes
unsigned char CAL8= 0 ; / / Cal bytes

unsigned char roughx= 0 ; / / Cal bytes
unsigned char roughy1= 0 ; / / Cal bytes
unsigned char roughy2= 0 ; / / Cal bytes

f l o a t a [9] ;
s h o r t b [9] ;

vo id in i tMag (unsigned char SENSOR)
{

/ / I n i t v a r i a b l e s
unsigned char rough0= 0 ;
unsigned char rough1= 0 ;
unsigned char rough2= 0 ;
unsigned char rough3= 0 ;
unsigned char rough4= 0 ;
unsigned char rough5= 0 ;

/ / I n i t i a l i z e r e g i s t e r s : w r i t e ze r o s
I 2CSta r t () ;

Magnetometer 255

I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b10000000) ;
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b11000000) ;

/ / A c t i v a t e i n i t i a l i z a t i o n c o i l s
f o r (unsigned char i = 0 ; i <8; i ++) {

I2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b10010000 | i) ;

I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b10000000 | ((i +1)&0b00000111)) ;

}

/ / Read f a c t o r y c a l i b r a t i o n
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b11001000) ; / / subadres

I 2CSta r t () ;
I2CSendData (I2CMAGREAD) ;
CAL0 = I2CRece ive () ;
CAL1 = I2CRece ive () ;
CAL2 = I2CRece ive () ;
CAL3 = I2CRece ive () ;
CAL4 = I2CRece ive () ;
CAL5 = I2CRece ive () ;
CAL6 = I2CRece ive () ;
CAL7 = I2CRece ive () ;
CAL8 = I2CReceiveNMAK () ;
I2CStop () ;

/ / Per form rough o f f s e t measurement
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b11000000) ; / / subadres
_delay_ms (3) ;
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b00000001) ; / / subadres
_delay_ms (3) ;
I 2CSta r t () ;
I2CSendData (I2CMAGREAD) ;
rough5= I2CRece ive () ; / / rough va lue s
rough4= I2CRece ive () ;
rough3= I2CRece ive () ;
rough2= I2CRece ive () ;
rough1= I2CRece ive () ;
rough0= I2CReceiveNMAK () ;

/ / Ca l cu l a t e rough o f f s e t s
#i f d e f FIRST
roughx = 15 ;
roughy1 = 26 ;

256 Second Generation Firmware

roughy2 = 11 ;

/ /EEPROM Write Magnetometer Rough o f f s e t s
SetRoughx (roughx) ;
SetRoughy1 (roughy1) ;
SetRoughy2 (roughy2) ;

#e lse

/ / R e t r i e v e roughs f rom EEPROM
roughx = Retr ieveRoughx () ;
roughy1 = Retr ieveRoughy1 () ;
roughy2 = Retr ieveRoughy2 () ;
#e n d i f

/ / F i x i ng c a l i b r a t i o n i s s u e s ?
i f (roughx != (rough0 & 0b00011111))
{

f o r (; ;)
{

f o r (i n t i = 0 ; i < 10000 ; i ++);
}

}
i f (roughy1 != (rough2 & 0b00011111))
{

f o r (; ;)
{

f o r (i n t i = 0 ; i < 10000 ; i ++);
}

}
i f (roughy2 != (rough4 & 0b00011111))
{

f o r (; ;)
{

f o r (i n t i = 0 ; i < 10000 ; i ++);
}

}

/ / Wri te the rough o f f s e t s to the r e g i s t e r s
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b00100000 | (roughx - 5)) ;
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b01000000 | (roughy1 - 5)) ;
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b01100000 | (roughy2 - 5)) ;

/ / Order mag to pe r f o rm f i r s t measurement
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ;
I2CSendData (0 b00000000) ;
I2CStop () ;

/ / Ca l cu l a t e c a l i b r a t i o n va l ue s as f l o a t
a [0] = 1 ;

Magnetometer 257

a [1] = ((CAL0 & 0xFC) > >(2)) - 32 ;
a [1] /= 100;
a [2] = ((CAL0 & 0x03) < <(2)) + ((CAL1 & 0xC0) > >(6)) - 8 ;
a [2] /= 100;
a [3] = (CAL1 & 0x3F) - 32 ;
a [3] /= 100;
a [4] = ((CAL2 & 0xFC) > >(2)) - 32 ;
a [4] = a [4] / 100 + 0 . 7 ;
a [5] = ((CAL2 & 0x03) < <(4)) + ((CAL3 & 0xF0) > >(4)) - 32 ;
a [5] /= 100;
a [6] = ((CAL3 & 0x0F) < <(2)) + ((CAL4 & 0xC0) > >(6)) - 32 ;
a [6] /= 100;
a [7] = (CAL4 & 0x3F) - 32 ;
a [7] /= 100;
a [8] = ((CAL5 & 0xFE)>>1) - 64 ;
a [8] = a [8] / 100 + 1 . 3 ;

/ / Ca l cu l a t e f i x e d p o i n t r e p r e s e n t a t i o n
f o r (u i n t 8 _ t i = 0 ; i <9; i ++) {

i f (a [i] <0){
a [i] = -a [i] ;
b [i] = 0x8000 ;

}
}
f l o a t t e s t = 16 ;
f o r (u i n t 8 _ t i =1; i <16; i ++){

f o r (u i n t 8 _ t j =0; j <9; j ++){
i f (a [j] >= t e s t) {

a [j] -= t e s t ;
b [j] |= 1<<(15- i) ;

}
}
t e s t /= 2 ;

}
f o r (u i n t 8 _ t i = 0 ; i <9; i ++) {

i f (b [i] >> 15){
b [i] -= 0x8001 ;
b [i] ^= 0xFFFF ;

}
}

}

vo id readMag (vo id)
{

/ / I n i t v a r i a b l e s
unsigned char waarde0 = 0 ;
unsigned char waarde1 = 0 ;
unsigned char waarde2 = 0 ;
unsigned char waarde3 = 0 ;
unsigned char waarde4 = 0 ;
unsigned char waarde5 = 0 ;

/ / Communicate v i a I2C
I 2CSta r t () ;
I2CSendData (I2CMAGREAD) ;
waarde5 = I2CRece ive () ;
waarde4 = I2CRece ive () ;

258 Second Generation Firmware

waarde3 = I2CRece ive () ;
waarde2 = I2CRece ive () ;
waarde1 = I2CRece ive () ;
waarde0 = I2CReceiveNMAK () ;
I2CStop () ;

/ / Command mag to pe r f o rm new measurement f o r nex t read
I 2CSta r t () ;
I2CSendData (I2CMAGWRITE) ; / / adres i s 2e en s c h r i j v e n
I2CSendData (0 b00000000) ;
I2CStop () ;

/ / Declare f i x e d p o i n t v a r i a b l e s , s h o r t = 16 b i t v a r i a b l e .
s h o r t x , y , z ;

/ / Ca l cu l a t e f i x e d p o i n t r e p r e s e n t a t i o n and add rough o f f s e t va lue
x = ((((roughx - 5) + (waarde1 & 0x07)) << 10)

| (waarde0 << 2)) - (15 << 1 0) ;
y = ((((roughy1 - 5) + (waarde3 & 0x07)) << 10)

| (waarde2 << 2)) - (15 << 1 0) ;
z = ((((roughy2 - 5) + (waarde5 & 0x07)) << 10)

| (waarde4 << 2)) - (15 << 1 0) ;

/ / Conver t the a x i s va l ue s i n t o the s tandard c o o r d i n a t e system
x = - x ;
s h o r t temp = z - y ;
z = y + z ;
y = temp ;

/ / Apply f a c t o r y c a l i b r a t i o n
s h o r t MData [3] ;
MData [0] = x + fpMul t (b [1] , y) + fpMul t (b [2] , z) ;
MData [1] = fpMul t (b [3] , x) + fpMul t (b [4] , y) + fpMul t (b [5] , z) ;
MData [2] = fpMul t (b [6] , x) + fpMul t (b [7] , y) + fpMul t (b [8] , z) ;

/ / Add va lue s to s e n d b u f f e r
CYWM_AddToTXBuffer (MData [0]) ;
CYWM_AddToTXBuffer (MData [0] > >8) ;
CYWM_AddToTXBuffer (MData [1]) ;
CYWM_AddToTXBuffer (MData [1] > >8) ;
CYWM_AddToTXBuffer (MData [2]) ;
CYWM_AddToTXBuffer (MData [2] > >8) ;

}

B.7 Gyroscope

Code Segment B.13: Gyr.h

vo id ADC_Init (vo id) ;
vo id readGyr (vo id) ;

Code Segment B.14: Gyr.c

Gyroscope 259

#inc lude " gyr . h "
#inc lude " I2C . h "
#inc lude " CYWUSB693x . h "
#inc lude " hardware . h "

vo id ADC_Init (vo id) {
/ /ADC u c o n t r o l l e r
DIDR0 = 0 x0c ;
ADMUX = (0<<REFS1) | (1<<REFS0) | (1<<ADLAR) |0 x03 ;

/ / Gyro - p ins
DDRC &= ~(1<<PIN0) ;
DDRC &= ~(1<<PIN1) ;
DDRC &= ~(1<<PIN2) ;
DDRB |= (1<<PIN1) ;

/ /ADC e x t e r n
I 2CSta r t () ;
I2CSendData (0 x42) ;
I2CSendData (0 x02) ;
I2CSendData (0 x70) ; / / channel 1 ,2 ,3 enable en f i l t e r enable
I2CStop () ;

}

u i n t 8 _ t ADC_Value (vo id) {
ADMUX = (1<<REFS1) | (1<<REFS0) | (1<<ADLAR) | 3 ; / / 1 . 1 V re f
ADCSRA = (1<<ADEN) | (1<<ADSC) | (3<<ADPS0) ; / / ADC3
whi le (ADCSRA & (1<<ADSC)) ;
r e t u r n ADCH;

}

vo id readGyr (vo id)
{

/ / Read gyro ou tpu t v i a i n t e r n a l ADC
/ / Gyro x : ADC2

ADMUX = (0<<REFS1) | (1<<REFS0) | (1<<ADLAR) |0 x02 ;
ADCSRA = (1<<ADEN) | (1<<ADSC) | (3<<ADPS0) ;
whi le (ADCSRA & (1<<ADSC)) ;
CYWM_AddToTXBuffer (ADCH- 1 1 8) ;

/ / Gyro y : ADC1
ADMUX = (0<<REFS1) | (1<<REFS0) | (1<<ADLAR) |0 x01 ;
ADCSRA = (1<<ADEN) | (1<<ADSC) | (3<<ADPS0) ;
whi le (ADCSRA & (1<<ADSC)) ;
CYWM_AddToTXBuffer (ADCH- 1 0 1) ;

/ / Gyro z : ADC0
ADMUX = (0<<REFS1) | (1<<REFS0) | (1<<ADLAR) |0 x00 ;
ADCSRA = (1<<ADEN) | (1<<ADSC) | (3<<ADPS0) ;
whi le (ADCSRA & (1<<ADSC)) ;
CYWM_AddToTXBuffer (ADCH- 1 1 1) ;

}

260 Second Generation Firmware

B.8 Calibration

Code Segment B.15: Calibration.h

#de f ine NODENUMBER (unsigned char *) 0 x10

#de f ine ROUGHx (unsigned char *) 0 x20
#de f ine ROUGHy1 (unsigned char *) 0 x21
#de f ine ROUGHy2 (unsigned char *) 0 x22

unsigned char Retr ieveSensorNumber (vo id) ;
vo id SetSensorNumber (unsigned char SENSOR) ;
unsigned char Retr ieveRoughx (vo id) ;
vo id SetRoughx (unsigned char rough) ;
unsigned char Retr ieveRoughy1 (vo id) ;
vo id SetRoughy1 (unsigned char rough) ;
unsigned char Retr ieveRoughy2 (vo id) ;
vo id SetRoughy2 (unsigned char rough) ;

Code Segment B.16: Calibration.c

#inc lude " c a l i b r a t i o n . h "
#inc lude " hardware . h "

unsigned char Retr ieveSensorNumber (vo id)
{

eeprom_busy_wait () ;
r e t u r n eeprom_read_byte (NODENUMBER) ;

}

vo id SetSensorNumber (unsigned char SENSOR)
{

eeprom_busy_wait () ;
eeprom_wr i te_byte (NODENUMBER, SENSOR) ;

}

unsigned char Retr ieveRoughx (vo id)
{

eeprom_busy_wait () ;
r e t u r n eeprom_read_byte (ROUGHx) ;

}

vo id SetRoughx (unsigned char rough)
{

eeprom_busy_wait () ;
eeprom_wr i te_byte (ROUGHx, rough) ;

}

unsigned char Retr ieveRoughy1 (vo id)
{

eeprom_busy_wait () ;
r e t u r n eeprom_read_byte (ROUGHy1) ;

}

vo id SetRoughy1 (unsigned char rough)

RF Transceiver 261

{
eeprom_busy_wait () ;
eeprom_wr i te_byte (ROUGHy1, rough) ;

}

unsigned char Retr ieveRoughy2 (vo id)
{

eeprom_busy_wait () ;
r e t u r n eeprom_read_byte (ROUGHy2) ;

}

vo id SetRoughy2 (unsigned char rough)
{

eeprom_busy_wait () ;
eeprom_wr i te_byte (ROUGHy2, rough) ;

}

B.9 RF Transceiver

Code Segment B.17: CYWUSB693x.h

#de f ine REG_WRITE 0x80
/ / -
/ / Channel r e g i s t e r
/ / -
#de f ine CHANNEL_ADR 0x00
#de f ine CHANNEL_RST 0x48
#de f ine CHANNEL_MSK 0x7F

#de f ine CHANNEL_MAX 0x62
#de f ine CHANNEL_MIN 0x00
#de f ine CHANNEL_2P498_GHZ 0x62
#de f ine CHANNEL_2P4_GHZ 0x00

/ / -
/ / TX Length r e g i s t e r
/ / -
#de f ine TX_LENGTH_ADR 0x01
#de f ine TX_LENGTH_RST 0x00
#de f ine TX_LENGTH_MSK 0xFF

/ / -
/ / TX Con t r o l r e g i s t e r
/ / -
#de f ine TX_CTRL_ADR 0x02
#de f ine TX_CTRL_RST 0x03

/ / TX_CTRL b i t masks
#de f ine TX_GO 0x80
#de f ine TX_CLR 0x40

/ / -
/ / TX C o n f i g u r a t i o n r e g i s t e r
/ / -

262 Second Generation Firmware

#de f ine TX_CFG_ADR 0x03
#de f ine TX_CFG_RST 0x07

/ / sepa ra te b i t f i e l d masks
#de f ine TX_DATCODE_LEN_MSK 0x20
#de f ine TX_DATMODE_MSK 0x18
#de f ine PA_VAL_MSK 0x07

/ / DATCODE_LEN r e g i s t e r masks
#de f ine DATCODE_LEN_64 0x20
#de f ine DATCODE_LEN_32 0x00

/ / DATMODE r e g i s t e r masks
#de f ine DATMODE_1MBPS 0x00
#de f ine DATMODE_8DR 0x08
#de f ine DATMODE_DDR 0x10
#de f ine DATMODE_SDR 0x18

/ / PA_SET r e g i s t e r masks
#de f ine PA_N30_DBM 0x00
#de f ine PA_N25_DBM 0x01
#de f ine PA_N20_DBM 0x02
#de f ine PA_N15_DBM 0x03
#de f ine PA_N10_DBM 0x04
#de f ine PA_N5_DBM 0x05
#de f ine PA_0_DBM 0x06
#de f ine PA_4_DBM 0x07

/ / -
/ / TX IRQ Status r e g i s t e r
/ / -
#de f ine TX_IRQ_STATUS_ADR 0x04

/ / TX_IRQ b i t masks
#de f ine XS_IRQ 0x80
#de f ine LV_IRQ 0x40
#de f ine TXB15_IRQ 0x20
#de f ine TXB8_IRQ 0x10
#de f ine TXB0_IRQ 0x08
#de f ine TXBERR_IRQ 0x04
#de f ine TXC_IRQ 0x02
#de f ine TXE_IRQ 0x01

/ / -
/ / RX Con t r o l r e g i s t e r
/ / -
#de f ine RX_CTRL_ADR 0x05
#de f ine RX_CTRL_RST 0x07

/ / RX_CTRL b i t masks
#de f ine RX_GO 0x80

/ / -
/ / RX C o n f i g u r a t i o n r e g i s t e r
/ / -
#de f ine RX_CFG_ADR 0x06
#de f ine RX_CFG_RST 0x92

RF Transceiver 263

#de f ine AUTO_AGC_EN 0x80
#de f ine LNA_EN 0x40
#de f ine ATT_EN 0x20
#de f ine HI 0x10
#de f ine LO 0x00
#de f ine FASTTURN_EN 0x08
#de f ine RXOW_EN 0x02
#de f ine VLD_EN 0x01

/ / -
/ / RX IRQ r e g i s t e r
/ / -
#de f ine RX_IRQ_STATUS_ADR 0x07

/ / RX_IRQ b i t masks
#de f ine RXOW_IRQ 0x80
#de f ine SOFDET_IRQ 0x40
#de f ine RXB16_IRQ 0x20
#de f ine RXB8_IRQ 0x10
#de f ine RXB1_IRQ 0x08
#de f ine RXBERR_IRQ 0x04
#de f ine RXC_IRQ 0x02
#de f ine RXE_IRQ 0x01

/ / -
/ / RX Status r e g i s t e r
/ / -
#de f ine RX_STATUS_ADR 0x08

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine RX_ACK 0x80
#de f ine RX_PKTERR 0x40
#de f ine RX_EOPERR 0x20
#de f ine RX_CRC0 0x10
#de f ine RX_BAD_CRC 0x08
#de f ine RX_DATCODE_LEN 0x04
#de f ine RX_DATMODE_MSK 0x03

/ / -
/ / RX Count r e g i s t e r
/ / -
#de f ine RX_COUNT_ADR 0x09
#de f ine RX_COUNT_RST 0x00
#de f ine RX_COUNT_MSK 0xFF

/ / -
/ / RX Length F ie ld r e g i s t e r
/ / -
#de f ine RX_LENGTH_ADR 0x0A
#de f ine RX_LENGTH_RST 0x00
#de f ine RX_LENGTH_MSK 0xFF

/ / -
/ / Power Con t r o l r e g i s t e r
/ / -
#de f ine PWR_CTRL_ADR 0x0B

264 Second Generation Firmware

#de f ine PWR_CTRL_RST 0xA0

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine PMU_EN 0x80
#de f ine LV_IRQ_EN 0x40
#de f ine PMU_SEN 0x20
#de f ine PFET_OFF 0x10
#de f ine LV_IRQ_TH_MSK 0x0C
#de f ine PMU_OUTV_MSK 0x03

/ / LV_IRQ_TH va lue s
#de f ine LV_IRQ_TH_1P8_V 0x0C
#de f ine LV_IRQ_TH_2P0_V 0x08
#de f ine LV_IRQ_TH_2P2_V 0x04
#de f ine LV_IRQ_TH_PMU_OUTV 0x00

/ / PMU_OUTV va lue s
#de f ine PMU_OUTV_2P4 0x03
#de f ine PMU_OUTV_2P5 0x02
#de f ine PMU_OUTV_2P6 0x01
#de f ine PMU_OUTV_2P7 0x00

/ / -
/ / C r y s t a l Con t r o l r e g i s t e r
/ / -
#de f ine XTAL_CTRL_ADR 0x0C
#de f ine XTAL_CTRL_RST 0x04

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine XOUT_FNC_MSK 0xC0
#de f ine XS_IRQ_EN 0x20
#de f ine XOUT_FREQ_MSK 0x07

/ / XOUT_FNC va lue s
#de f ine XOUT_FNC_XOUT_FREQ 0x00
#de f ine XOUT_FNC_PA_N 0x40
#de f ine XOUT_FNC_RAD_STREAM 0x80
#de f ine XOUT_FNC_GPIO 0xC0

/ / XOUT_FREQ va lues
#de f ine XOUT_FREQ_12MHZ 0x00
#de f ine XOUT_FREQ_6MHZ 0x01
#de f ine XOUT_FREQ_3MHZ 0x02
#de f ine XOUT_FREQ_1P5MHZ 0x03
#de f ine XOUT_FREQ_P75MHZ 0x04

/ / -
/ / I /O C o n f i g u r a t i o n r e g i s t e r
/ / -
#de f ine IO_CFG_ADR 0x0D
#de f ine IO_CFG_RST 0x00
#de f ine IO_CFG_MSK 0xFF

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine IRQ_OD 0x80
#de f ine IRQ_POL 0x40
#de f ine MISO_OD 0x20

RF Transceiver 265

#de f ine XOUT_OD 0x10
#de f ine PACTL_OD 0x08
#de f ine PACTL_GPIO 0x04
#de f ine SPI_3_PIN 0x02
#de f ine IRQ_GPIO 0x01

/ / -
/ / GPIO Con t r o l r e g i s t e r
/ / -
#de f ine GPIO_CTRL_ADR 0x0E
#de f ine GPIO_CTRL_RST 0x00
#de f ine GPIO_CTRL_MSK 0xF0

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine XOUT_OP 0x80
#de f ine MISO_OP 0x40
#de f ine PACTL_OP 0x20
#de f ine IRQ_OP 0x10
#de f ine XOUT_IP 0x08
#de f ine MISO_IP 0x04
#de f ine PACTL_IP 0x02
#de f ine IRQ_IP 0x01

/ / -
/ / T ransac t i on C o n f i g u r a t i o n r e g i s t e r
/ / -
#de f ine XACT_CFG_ADR 0x0F
#de f ine XACT_CFG_RST 0x80

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine ACK_EN 0x80
#de f ine FRC_END_STATE 0x20
#de f ine END_STATE_MSK 0x1C
#de f ine ACK_TO_MSK 0x03

/ / END_STATE f i e l d va l ue s
#de f ine END_STATE_SLEEP 0x00
#de f ine END_STATE_IDLE 0x04
#de f ine END_STATE_TXSYNTH 0x08
#de f ine END_STATE_RXSYNTH 0x0C
#de f ine END_STATE_RX 0x10

/ / ACK_TO f i e l d va l ue s
#de f ine ACK_TO_4X 0x00
#de f ine ACK_TO_8X 0x01
#de f ine ACK_TO_12X 0x02
#de f ine ACK_TO_15X 0x03

/ / -
/ / Framing C o n f i g u r a t i o n r e g i s t e r
/ / -
#de f ine FRAMING_CFG_ADR 0x10
#de f ine FRAMING_CFG_RST 0xA5

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine SOP_EN 0x80
#de f ine SOP_LEN 0x40

266 Second Generation Firmware

#de f ine LEN_EN 0x20
#de f ine SOP_THRESH_MSK 0x1F

/ / -
/ / Data Thresho ld 32 r e g i s t e r
/ / -
#de f ine DATA32_THOLD_ADR 0x11
#de f ine DAT32_THRESH_RST 0x04
#de f ine DAT32_THRESH_MSK 0x0F

/ / -
/ / Data Thresho ld 64 r e g i s t e r
/ / -
#de f ine DATA64_THOLD_ADR 0x12
#de f ine DAT64_THRESH_RST 0x0A
#de f ine DAT64_THRESH_MSK 0x1F

/ / -
/ / RSSI r e g i s t e r
/ / -
#de f ine RSSI_ADR 0x13
#de f ine RSSI_RST 0x20

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine SOP_RSSI 0x80
#de f ine LNA_STATE 0x20
#de f ine RSSI_LVL_MSK 0x1F

/ / -
/ / EOP Con t r o l r e g i s t e r
/ / -
#de f ine EOP_CTRL_ADR 0x14
#de f ine EOP_CTRL_RST 0xA4

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine HINT_EN 0x80
#de f ine HINT_EOP_MSK 0x70
#de f ine EOP_MSK 0x0F

/ / -
/ / CRC Seed r e g i s t e r s
/ / -
#de f ine CRC_SEED_LSB_ADR 0x15
#de f ine CRC_SEED_MSB_ADR 0x16
#de f ine CRC_SEED_LSB_RST 0x00
#de f ine CRC_SEED_MSB_RST 0x00

/ / CRC r e l a t e d va l ue s
/ / USB CRC-16
#de f ine CRC_POLY_MSB 0x80
#de f ine CRC_POLY_LSB 0x05
#de f ine CRC_RESI_MSB 0x80
#de f ine CRC_RESI_LSB 0x0D

/ / -
/ / TX CRC Ca l cu la t ed r e g i s t e r s
/ / -

RF Transceiver 267

#de f ine TX_CRC_LSB_ADR 0x17
#de f ine TX_CRC_MSB_ADR 0x18

/ / -
/ / RX CRC Fie ld r e g i s t e r s
/ / -
#de f ine RX_CRC_LSB_ADR 0x19
#de f ine RX_CRC_MSB_ADR 0x1A
#de f ine RX_CRC_LSB_RST 0xFF
#de f ine RX_CRC_MSB_RST 0xFF

/ / -
/ / Synth O f f s e t r e g i s t e r s
/ / -
#de f ine TX_OFFSET_LSB_ADR 0x1B
#de f ine TX_OFFSET_MSB_ADR 0x1C
#de f ine TX_OFFSET_LSB_RST 0x00
#de f ine TX_OFFSET_MSB_RST 0x00

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine STRIM_MSB_MSK 0x0F
#de f ine STRIM_LSB_MSK 0xFF

/ / -
/ / Mode Ove r r i de r e g i s t e r
/ / -
#de f ine MODE_OVERRIDE_ADR 0x1D
#de f ine MODE_OVERRIDE_RST 0x00

#de f ine FRC_AWAKE 0x03
#de f ine FRC_AWAKE_OFF_1 0x01
#de f ine FRC_AWAKE_OFF_2 0x00

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine DIS_AUTO_SEN 0x80
#de f ine SEN_TXRXB 0x40
#de f ine FRC_SEN 0x20
#de f ine FRC_AWAKE_MSK 0x18
#de f ine MODE_OVRD_FRC_AWAKE 0x18
#de f ine MODE_OVRD_FRC_AWAKE_OFF_1 0x08
#de f ine MODE_OVRD_FRC_AWAKE_OFF_2 0x00
#de f ine RST 0x01
#de f ine FRC_PA 0x02

/ / -
/ / RX Over r i de r e g i s t e r
/ / -
#de f ine RX_OVERRIDE_ADR 0x1E
#de f ine RX_OVERRIDE_RST 0x00

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine ACK_RX 0x80
#de f ine EXTEND_RX_TX 0x40
#de f ine MAN_RXACK 0x20
#de f ine FRC_RXDR 0x10
#de f ine DIS_CRC0 0x08
#de f ine DIS_RXCRC 0x04

268 Second Generation Firmware

#de f ine ACE 0x02

/ / -
/ / TX Ove r r i de r e g i s t e r
/ / -
#de f ine TX_OVERRIDE_ADR 0x1F
#de f ine TX_OVERRIDE_RST 0x00

/ / s i n g l e f l a g b i t s & mul t i - b i t - f i e l d masks
#de f ine ACK_TX_SEN 0x80
#de f ine FRC_PREAMBLE 0x40
#de f ine DIS_TX_RETRANS 0x20
#de f ine MAN_TXACK 0x10
#de f ine OVRRD_ACK 0x08
#de f ine DIS_TXCRC 0x04
#de f ine CO 0x02
#de f ine TXINV 0x01

/ / -
/ / F i l e Func t ion De ta i l
/ / -

/ / -
/ / TX B u f f e r - 16 bytes
/ / -
#de f ine TX_BUFFER_ADR 0x20

/ / -
/ / RX B u f f e r - 16 bytes
/ / -
#de f ine RX_BUFFER_ADR 0x21

/ / -
/ / Framing Code - 8 bytes
/ / -
#de f ine SOP_CODE_ADR 0x22

/ / CODESTORE_REG_SOF_RST
#de f ine CODESTORE_BYTE7_SOF_RST 0x17
#de f ine CODESTORE_BYTE6_SOF_RST 0xFF
#de f ine CODESTORE_BYTE5_SOF_RST 0x9E
#de f ine CODESTORE_BYTE4_SOF_RST 0x21
#de f ine CODESTORE_BYTE3_SOF_RST 0x36
#de f ine CODESTORE_BYTE2_SOF_RST 0x90
#de f ine CODESTORE_BYTE1_SOF_RST 0xC7
#de f ine CODESTORE_BYTE0_SOF_RST 0x82

/ / -
/ / Data Code - 16 bytes
/ / -
#de f ine DATA_CODE_ADR 0x23

/ / CODESTORE_REG_DCODE0_RST
#de f ine CODESTORE_BYTE7_DCODE0_RST 0x01
#de f ine CODESTORE_BYTE6_DCODE0_RST 0x2B
#de f ine CODESTORE_BYTE5_DCODE0_RST 0xF1
#de f ine CODESTORE_BYTE4_DCODE0_RST 0xDB

RF Transceiver 269

#de f ine CODESTORE_BYTE3_DCODE0_RST 0x01
#de f ine CODESTORE_BYTE2_DCODE0_RST 0x32
#de f ine CODESTORE_BYTE1_DCODE0_RST 0xBE
#de f ine CODESTORE_BYTE0_DCODE0_RST 0x6F

/ / CODESTORE_REG_DCODE1_RST
#de f ine CODESTORE_BYTE7_DCODE1_RST 0x02
#de f ine CODESTORE_BYTE6_DCODE1_RST 0xF9
#de f ine CODESTORE_BYTE5_DCODE1_RST 0x93
#de f ine CODESTORE_BYTE4_DCODE1_RST 0x97
#de f ine CODESTORE_BYTE3_DCODE1_RST 0x02
#de f ine CODESTORE_BYTE2_DCODE1_RST 0xFA
#de f ine CODESTORE_BYTE1_DCODE1_RST 0x5C
#de f ine CODESTORE_BYTE0_DCODE1_RST 0xE3

/ / -
/ / Preamble - 3 bytes
/ / -
#de f ine PREAMBLE_ADR 0x24

#de f ine PREAMBLE_CODE_MSB_RST 0x33
#de f ine PREAMBLE_CODE_LSB_RST 0x33
#de f ine PREAMBLE_LEN_RST 0x02

/ / -
/ / Laser Fuses - 8 bytes (2 hidden)
/ / -
#de f ine MFG_ID_ADR 0x25

/ / -
/ / XTAL Star tup Delay
/ / -
#de f ine XTAL_CFG_ADR 0x26
#de f ine XTAL_CFG_RST 0x00

/ / -
/ / Clock Ove r r i de
/ / -
#de f ine CLK_OVERRIDE_ADR 0x27
#de f ine CLK_OVERRIDE_RST 0x00

#de f ine RXF 0x02

/ / -
/ / Clock Enable
/ / -
#de f ine CLK_EN_ADR 0x28
#de f ine CLK_EN_RST 0x00

#de f ine RXF 0x02

/ / -
/ / Rece i ve r Abor t
/ / -
#de f ine RX_ABORT_ADR 0x29
#de f ine RX_ABORT_RST 0x00

270 Second Generation Firmware

#de f ine ABORT_EN 0x20

/ / -
/ / Auto C a l i b r a t i o n Time
/ / -
#de f ine AUTO_CAL_TIME_ADR 0x32
#de f ine AUTO_CAL_TIME_RST 0x0C

#de f ine AUTO_CAL_TIME_MAX 0x3C

/ / -
/ / Auto C a l i b r a t i o n O f f s e t
/ / -
#de f ine AUTO_CAL_OFFSET_ADR 0x35
#de f ine AUTO_CAL_OFFSET_RST 0x00

#de f ine AUTO_CAL_OFFSET_MINUS_4 0x14

/ / -
/ / Channels
/ / -
#de f ine CHANNEL0 0
#de f ine CHANNEL1 6
#de f ine CHANNEL2 12
#de f ine CHANNEL3 18
#de f ine CHANNEL4 24
#de f ine CHANNEL5 30
#de f ine CHANNEL6 36
#de f ine CHANNEL7 42
#de f ine CHANNEL8 48
#de f ine CHANNEL9 54

#de f ine CMST
/ /#d e f i n e IPEM

#i f d e f IPEM
#de f ine MASTERCHANNEL CHANNEL1
#de f ine SLAVECHANNEL CHANNEL2
#e n d i f
#i f d e f CMST
#de f ine MASTERCHANNEL CHANNEL5
#de f ine SLAVECHANNEL CHANNEL6
#e n d i f

/ / Number o f bytes to send per package
#de f ine PACKETSIZE 11

/ / Func t i ons i n CYWUSB693x . c
vo id CYWM_WriteReg (unsigned char which , unsigned char data) ;
unsigned char CYWM_ReadReg (unsigned char which) ;
vo id CYWM_Init (vo id) ;
vo id CYWM_SetPacketSizeSlave (vo id) ;
vo id CYWM_SetPacketSizeMaster (vo id) ;
vo id CYWM_SetChannel (unsigned char channel) ;
vo id CYWM_AddToTXBuffer (unsigned char data) ;
vo id CYWM_ClearTXBuffer (vo id) ;
vo id CYWM_SendPacket (vo id) ;

RF Transceiver 271

vo id CYWM_Receive (vo id) ;
vo id CYWM_EndReceive (vo id) ;
vo id send (vo id) ;

Code Segment B.18: CYWUSB693x.c

#inc lude " CYWUSB693x . h "
#inc lude " hardware . h "
#inc lude " SPI . h "

vo id CYWM_WriteReg (unsigned char which , unsigned char data)
{

low (CYWM_nSS_PORT, CYWM_nSS) ;
SPI_Write (REG_WRITE | which) ;
SPI_Write (data) ;
h igh (CYWM_nSS_PORT, CYWM_nSS) ;

}

unsigned char CYWM_ReadReg (unsigned char which)
{

low (CYWM_nSS_PORT, CYWM_nSS) ;
SPI_Write (which) ;
SPI_Write (which) ;
h igh (CYWM_nSS_PORT, CYWM_nSS) ;
r e t u r n SPDR;

}

vo id CYWM_Init (vo id)
{

/ / So f t r e s e t
CYWM_WriteReg (MODE_OVERRIDE_ADR, RST) ;

/ / i n i t o f CYWUSB

/ / Necessary w r i t e s f o r good ope ra t i on ,
/ / s e t AUTO c a l i b r a t i o n r e g i s t e r s to s td va l ue s
CYWM_WriteReg (AUTO_CAL_TIME_ADR , AUTO_CAL_TIME_MAX) ;
CYWM_WriteReg (AUTO_CAL_OFFSET_ADR , AUTO_CAL_OFFSET_MINUS_4) ;

/ / Disable Power Management Uni t
CYWM_WriteReg (PWR_CTRL_ADR, PMU_SEN) ;

/ / S t a r t up the c r y s t a l
CYWM_WriteReg (XTAL_CFG_ADR , 0x04) ;
CYWM_WriteReg (XTAL_CTRL_ADR , XOUT_FNC_GPIO) ;

/ / Set IRQ pin to a c t i v e HIGH
CYWM_WriteReg (IO_CFG_ADR , IRQ_POL) ;

/ / Enable LNA , FastTurn and d i s a b l e RX o v e r w r i t e and Auto AGC
CYWM_WriteReg (RX_CFG_ADR , ((RX_CFG_RST | FASTTURN_EN | LNA_EN)

& ~(HI | AUTO_AGC_EN | RXOW_EN))) ;

/ / Set DATA Mode
CYWM_WriteReg (TX_CFG_ADR , TX_CFG_RST | DATMODE_8DR) ;

/ / Enable SOP and s e t t h r e s h h o l d

272 Second Generation Firmware

CYWM_WriteReg (FRAMING_CFG_ADR, SOP_EN | 0x05) ;

/ / l eng th o f t r a n s m i t b u f f e r i s PACKETSIZE byte
CYWM_WriteReg (TX_LENGTH_ADR, PACKETSIZE) ;

/ / Set preamble address
low (CYWM_nSS_PORT, CYWM_nSS) ;
SPI_Write (REG_WRITE | PREAMBLE_ADR) ;
SPI_Write (0 x04) ;
SPI_Write (0 x33) ;
SPI_Write (0 x33) ;
h igh (CYWM_nSS_PORT, CYWM_nSS) ;

/ / Set end s t a t e to i d l e
CYWM_WriteReg (XACT_CFG_ADR , END_STATE_IDLE) ;

/ / Syn thes i s e r o f f s e t
CYWM_WriteReg (TX_OFFSET_LSB_ADR , 0x55) ;
CYWM_WriteReg (TX_OFFSET_MSB_ADR, 0x05) ;
r e t u r n ;

}

vo id CYWM_SetChannel (unsigned char channel)
{

CYWM_WriteReg (CHANNEL_ADR, channel) ;
}

vo id CYWM_AddToTXBuffer (unsigned char data)
{

CYWM_WriteReg (TX_BUFFER_ADR , data) ;
}

vo id CYWM_ClearTXBuffer (vo id)
{

CYWM_WriteReg (TX_CTRL_ADR , TX_CLR) ;
}

vo id CYWM_SendPacket (vo id)
{

/ / S t a r t t r a n s m i t
CYWM_WriteReg (TX_CTRL_ADR , TX_CTRL_RST | TX_GO) ;
whi le (! (CYWM_ReadReg (TX_IRQ_STATUS_ADR) & TXC_IRQ)) {}
CYWM_ClearTXBuffer () ;

}

vo id CYWM_Receive (vo id)
{

CYWM_WriteReg (RX_CTRL_ADR , (RX_GO | RXC_IRQ)) ;
}

vo id CYWM_EndReceive (vo id)
{

CYWM_WriteReg (XACT_CFG_ADR ,
CYWM_ReadReg (XACT_CFG_ADR) | FRC_END_STATE) ;

whi le (CYWM_ReadReg (XACT_CFG_ADR) & FRC_END_STATE) {} ;
}

Main 273

/ / Send data to RF ch ip
vo id send (vo id)
{

CYWM_SendPacket () ;
}

B.10 Main

Code Segment B.19: Auto.c

#inc lude " CYWUSB693x . h "
#inc lude " hardware . h "
#inc lude " SPI . h "
#inc lude " I2C . h "
#inc lude " mag . h "
#inc lude " gyr . h "
#inc lude " acc . h "
#inc lude " f i x e d P o i n t . h "
#inc lude " c a l i b r a t i o n . h "

#de f ine wdr () __asm__ _ _ v o l a t i l e _ _ (" wdr " : :)

unsigned char TIMESLOT ;
unsigned char SENSOR;

unsigned char Slaves [1 0] ;

unsigned char coun te r ;
unsigned char LEDcounter ;
unsigned s h o r t mas te r_coun te r ;

unsigned char waitToSend ;
unsigned char wai tToRece i ve ;
unsigned char waitForMaster ;

unsigned char wakeup ;

unsigned char s ta r tUp ;
unsigned char i sMaste r ;
unsigned char check ingMaster ;
unsigned char scann ingSlaves ;

vo id StartUpDelay (vo id)
{

/ / Set boolean
s ta r tUp = 1 ;

/ / Set up t i m e r
Timer_Start_Up (SENSOR) ;

/ / Wait f o r t i m e r i n t e r r u p t
set_s leep_mode (SLEEP_MODE_IDLE) ;
s l eep_enab le () ;

274 Second Generation Firmware

sleep_mode () ;

/ / Reset Timer
Reset_Timer () ;

}

vo id CheckMaster (vo id)
{

/ / Set boolean
check ingMaster = 1 ;

/ / Set up t i m e r
Timer_Master_Check () ;

/ / Enable p in i n t e r r u p t
I n i t _ P i n _ i n t e r r u p t () ;
EIMSK = 0x01 ;

/ / Set up RF
CYWM_SetChannel (MASTERCHANNEL) ;
CYWM_Receive () ;

/ / Wait f o r comp le t i on
set_s leep_mode (SLEEP_MODE_IDLE) ;
s l eep_enab le () ;
sleep_mode () ;

/ / Reset Timer
Reset_Timer () ;

}

vo id SlaveScan (vo id)
{

/ / C lear s l a v e s t a b l e
f o r (unsigned char i =0; i <10; i ++)
{

Slaves [i] = 0 ;
}

/ / Set boolean
scann ingSlaves = 1 ;

/ / Set up t i m e r
Timer_Slave_Scan () ;

/ / Enable p in i n t e r r u p t
I n i t _ P i n _ i n t e r r u p t () ;
EIMSK = 0x01 ;

/ / Set up RF
CYWM_SetChannel (SLAVECHANNEL) ;

/ / Wait f o r comp le t i on
do
{

CYWM_Receive () ;

Main 275

set_s leep_mode (SLEEP_MODE_IDLE) ;
s l eep_enab le () ;
sleep_mode () ;

} whi le (s cann ingSlaves == 1) ;

/ / Ass ign t i m e s l o t
f o r (unsigned char i =0; i <10; i ++)
{

i f (S laves [i] == 0){
TIMESLOT = i +1;
i = 10 ;

}
}

/ / Reset to master channel
CYWM_SetChannel (MASTERCHANNEL) ;

/ / Reset Timer
Reset_Timer () ;

}

vo id Maste rCon f l i c tCheck (vo id)
{

/ / Set boolean
check ingMaster = 1 ;

/ / Enable i n t e r r u p t s
EIMSK = 0x01 ;
TIMSK1 = 0x20 ;

/ / Set up RF
CYWM_Receive () ;

/ / Wait f o r comp le t i on
set_s leep_mode (SLEEP_MODE_IDLE) ;
s l eep_enab le () ;
sleep_mode () ;

/ / I n i t i a l i z e node as s l a v e i f ano ther master i s de t e c t ed
i f (i sMaste r==0)

{
wdr () ;

SlaveScan () ;
S l a v e _ T i m e r _ I n i t (TIMESLOT) ;
}

e lse
{

TIMSK1 = 0x20 ;
}

}

i n t main ()
{

/ / Setup Watchdog t i m e r
/ / Reset
wdr () ;

276 Second Generation Firmware

/ * S ta r t t imed equence * /
WDTCSR |= (1<<WDCE) | (1<<WDE) ;
/ * Set new p r e s c a l e r (t ime - out) va lue = 16K c y c l e s (~125 ms) * /
WDTCSR = (1<<WDE) | (1<<WDP1) | (1<<WDP0) ;

/ / I n i t i a l i z e LedPort
in i tLEDPort () ;

/ / Disable i n t e r r u p t s
c l i () ;

#i f d e f FIRST
/ /EEPROM Write Sensor number
SetSensorNumber (8) ;
#e n d i f

/ /EEPROM Read Sensor number
SENSOR = Retr ieveSensorNumber () ;
TIMESLOT = 1 ;

/ / I n i t i a l i z e p o r t s
P o r t _ I n i t () ;

/ / Set magnetometer to a c t i v e
high (PORTD, MAGRESET) ;

/ / Reset RF ch ip
high (PORTD, CYWM_nRESET) ;
low (PORTD, CYWM_nRESET) ;

/ / I n i t i a l i z e SPI i n t e r f a c e
S p i _ I n i t () ;

/ / Place i n t e r r u p t v e c t o r a t beg inn ing o f
/ / the Boot Loader s e c t i o n o f the Flash
MCUCR = _BV (ISC01) | _BV (ISC00) ;

/ / Enable i n t e r r u p t s
s e i () ;

/ / I n i t i a l i z e Cypress RF Chip
CYWM_Init () ;

/ / I n i t i a l i z e senso r s and ADC f o r gyros
i n i t _ A c c () ;
/ / ADC_Init () ;
in i tMag (SENSOR) ;

/ / Set the RF channel and c l e a r the s e n d b u f f e r
CYWM_SetChannel (MASTERCHANNEL) ;
CYWM_WriteReg (CRC_SEED_LSB_ADR, 0 x02) ;
CYWM_ClearTXBuffer () ; / / C lear b u f f e r

/ / I n i t booleans
wakeup = 0 ;
waitToSend = 0 ;
wai tToRece i ve = 0 ;

Main 277

waitForMaster = 0 ;
i sMaste r = 0 ;
check ingMaster = 0 ;
scann ingSlaves = 0 ;
s ta r tUp = 0 ;
coun te r = 0 ;
LEDcounter = 0 ;
mas te r_coun te r = 0 ;

/ / Per form s t a r t u p delay number o f t imes equal to SENSOR number
f o r (unsigned char i =0; i<=SENSOR; i ++){

wdr () ;
StartUpDelay () ;

}

/ / Check f o r master
wdr () ;
CheckMaster () ;

/ / I n i t i a l i z e node as master or s l a v e
i f (i sMaste r == 1){

Mas te r_T ime r_ In i t () ;
}
e lse {

wdr () ;
SlaveScan () ;
S l a v e _ T i m e r _ I n i t (TIMESLOT) ;

}

/ / S t a r t i n f i n i t e loop
f o r (; ;)
{

/ / Reset watchdogt imer
wdr () ;

i f (TIMESLOT < 5){

i f (i sMaste r == 1)
{

/ / Add coun te r to s e n d b u f f e r
CYWM_AddToTXBuffer (c oun te r) ;

}
e lse
{

/ / Add t i m e s l o t to s e n d b u f f e r
CYWM_AddToTXBuffer (TIMESLOT) ;

}

/ / Add sensornumber to s e n d b u f f e r
CYWM_AddToTXBuffer (SENSOR) ;

/ / Read senso r ou tpu t s
/ / readGyr () ;
readAcc () ;
readMag () ;

}

278 Second Generation Firmware

i f (i sMaste r == 0)
{

/ / Set boolean to wai t f o r master r e c e i v e
wai tToRece i ve = 1 ;
do{

i f (wa i tToRece i ve == 1){
TIMSK1 = 0x04 ;

}
i f (wai tForMaster == 1){

CYWM_Receive () ;
EIMSK = 0x01 ;

}
set_s leep_mode (SLEEP_MODE_IDLE) ;
s l eep_enab le () ;
sleep_mode () ;

} whi le (wakeup==0);

/ / C lear boolean
wakeup = 0 ;

i f (TIMESLOT > 4){

/ / Add t i m e s l o t to s e n d b u f f e r
CYWM_AddToTXBuffer (TIMESLOT) ;

/ / Add sensornumber to s e n d b u f f e r
CYWM_AddToTXBuffer (SENSOR) ;

/ / Read senso r ou tpu t s
/ / readGyr () ;
readAcc () ;
readMag () ;

}
}

/ / Wait f o r t i m e s l o t
set_s leep_mode (SLEEP_MODE_IDLE) ;
s l eep_enab le () ;
sleep_mode () ;

/ / Send data ove r RF l i n k
send () ;

/ / I n c remen t Counter
coun te r++;

/ / I f node i s master
i f (i sMaste r == 1)
{

/ / B l ink LED
i f (! ((c oun te r & 0x10) == 0))
{

toggleLED () ;
}

Main 279

/ / Decrement master c o n f l i c t check coun te r
mas te r_coun te r++;

/ / I f z e ro i s reached : check f o r c o n f l i c t s and r e s e t coun te r
i f (mas te r_coun te r == 1000+SENSOR)
{

mas te r_coun te r = 0 ;
Mas te rCon f l i c tCheck () ;

}
}

/ / I f node i s s l a v e
e lse
{

/ / B l ink LED number o f t imes equal to TIMESLOT
i f (((c oun te r >> 4) < TIMESLOT) & ((coun te r & 0x08) == 0x00))
{

setLED () ;
}
e lse
{

clearLED () ;
}

}
}
r e t u r n 0 ;

}

ISR (TIMER1_CAPT_vect) {
s l e e p _ d i s a b l e () ;
i f (s t a r tUp == 1){

s ta r tUp = 0 ;
TIMSK1 = 0x00 ;
TCNT1 = 0 ;

}
i f (check ingMaster == 1){

check ingMaster = 0 ;
CYWM_EndReceive () ;
i sMaste r = 1 ;
TIMESLOT = 0 ;
EIMSK = 0x00 ;
TIMSK1 = 0x00 ;
TCNT1 = 0 ;

}
i f (s cann ingSlaves == 1){

scann ingSlaves = 0 ;
CYWM_EndReceive () ;
EIMSK = 0x00 ;
TIMSK1 = 0x00 ;
TCNT1 = 0 ;

}
}

ISR (TIMER1_COMPA_vect) {
i f (TCNT1 >= OCR1A)
{

s l e e p _ d i s a b l e () ;

280 Second Generation Firmware

waitToSend = 0 ;
TIMSK1 = 0x00 ;

}
}

ISR (TIMER1_COMPB_vect) {
i f (TCNT1 >= OCR1B)
{

s l e e p _ d i s a b l e () ;
wa i tToRece i ve = 0 ;
wai tForMaster = 1 ;
TIMSK1 = 0x00 ;
CYWM_SetChannel (MASTERCHANNEL) ;

}
}

ISR (INT0_vect) {
i f (CYWM_ReadReg (RX_IRQ_STATUS_ADR) & RXC_IRQ)
{

s l e e p _ d i s a b l e () ;
i f (check ingMaster == 1){

check ingMaster = 0 ;
CYWM_EndReceive () ;
TIMSK1 = 0x00 ;
i sMaste r = 0 ;
f o r (unsigned char i =0; i<PACKETSIZE ; i ++){

CYWM_ReadReg (RX_BUFFER_ADR) ;
}

}
i f (s cann ingSlaves == 1){

unsigned char temp = CYWM_ReadReg (RX_BUFFER_ADR) ;
i f (temp < 10)
{

Slaves [temp - 1] = 1 ;
}
f o r (unsigned char i =1; i<PACKETSIZE ; i ++){

CYWM_ReadReg (RX_BUFFER_ADR) ;
}

}
i f (wai tForMaster == 1)
{

CYWM_EndReceive () ;
wai tForMaster = 0 ;
waitToSend = 1 ;
EIMSK = 0x00 ;
TCNT1 = 0 ;
TIMSK1 = 0x02 ;
CYWM_SetChannel (SLAVECHANNEL) ;
wakeup = 1 ;

}
}
r e t u r n ;

}

C
Third Generation Firmware

This appendix contains the firmware of the third generation motion tracking
sensor nodes.

C.1 Hardware

Code Segment C.1: Hardware.h

#i f n d e f HARDWARE_H
#de f ine HARDWARE_H

#inc lude " msp430x24x . h "

/ / measurement i n t e r v a l i n c l o c k p u l s e s on watch c r y s t a l
#de f ine MEASUREINTERVAL 327

/ / wa i t i ng t ime b e f o r e t u r n i n g on r e c e i v e r
#de f ine r e ce i v eWa i t MEASUREINTERVAL-30

/ / wa i t i ng t ime f o r master d e t e c t i o n
#de f ine MASTERCHECKTIME 1635

/ / scann ing t ime f o r s l a v e d e t e c t i o n
#de f ine SLAVESCANTIME 2000

/ / t ime in between s l o t s
#de f ine SLOTSIZE 28

/ / Number o f s l a v e s per channel
#de f ine SLAVES 9

282 Third Generation Firmware

/ / Booleans f o r i n t e r r u p t s
ex te rn unsigned char waitToSend ;
ex te rn unsigned char wai tToRece i ve ;

/ / Sensor node i n f o
ex te rn unsigned char t imeS lo t ;
ex te rn unsigned char Sensor ;

/ / Wait t imes
ex te rn i n t sendWait ;

/ / enum P1_PINS {
/ / } ;

/ / enum P2_PINS {
/ / } ;

enum P3_PINS {I2C_SDA = 1 , / / USCI B0 = I2C Acc and Mag
I2C_SCL = 2 , / / USCI B0 = I2C Acc and Mag
NRF_SIMO = 6 , / / USCI A1 = SPI nRF
NRF_SOMI = 7 / / USCI A1 = SPI nRF
} ;

enum P4_PINS {P4_CLK1 = 0 , / / Shorted to NRF CLK1 f o r r o u t i n g
NRF_DR1 = 5 , / / nRF Data Ready 1
NRF_CS = 6 , / / nRF Chip Se le c t
} ;

enum P5_PINS {NRF_CLK = 0 , / / USCI A1 = SPI nRF
NRF_SIMO2= 1 , / / USCI B1 = SPI2 nRF
NRF_SOMI2= 2 , / / USCI B1 = SPI2 nRF
NRF_CLK2 = 3 , / / USCI B1 = SPI2 nRFe
NRF_DR2 = 4 , / / nRF Data Ready 2
NRF_PWRUP= 5 , / / nRF Power Up pin
NRF_CE = 6 , / / nRF Chip Enable
LED = 7 / / LED ou tpu t
} ;

enum P6_PINS {MPIO = 0 / / Mul t ipurpose i n p u t ou tpu t p in
} ;

#de f ine LED_ON P5OUT |= (1<<LED)
#de f ine LED_OFF P5OUT &= ~(1<<LED)
#de f ine LED_TOGGLE P5OUT ^= (1<<LED)

/ / RF- ch ip i n t e r f a c e s

/ / SPI i n t e r f a c e s RF- ch ip

#de f ine SPIIFG UC1IFG
#de f ine SPIRXIFG UCA1RXIFG
#de f ine SPITXIFG UCA1TXIFG
#de f ine SPIRXBUF UCA1RXBUF
#de f ine SPITXBUF UCA1TXBUF

#de f ine SPI2IFG UC1IFG

Hardware 283

#de f ine SPI2RXIFG UCB1RXIFG
#de f ine SPI2TXIFG UCB1TXIFG
#de f ine SPI2RXBUF UCB1RXBUF
#de f ine SPI2TXBUF UCB1TXBUF

#de f ine SPI_PSEL P3SEL
#de f ine SPI_PDIR P3DIR

/ / Con t r o l p in s

#de f ine CS_POUT P4OUT
#de f ine PWRUP_POUT P5OUT
#de f ine CE_POUT P5OUT

/ / CPU c l o c k f r equency in MHz (used f o r de lays)
#de f ine CLOCKFREQUENCY 16

/ / macro f o r delay in mic roseconds
/ / use wi th c o n s t a n t s on ly (e va lua ted at compi le t ime)
#de f ine DELAYU(us){

i n t t = (us *CLOCKFREQUENCY) / 1 5 ;
delay (t) ;

}
#de f ine DELAYM(ms){

i n t mscnt ;
f o r (mscnt =0; mscnt<ms ; mscnt++)

DELAYU(1 0 0 0) ;
}

/ / Func t i ons i n hardware . c
vo id C l o c k _ i n i t (vo id) ;
vo id P o r t _ i n i t (vo id) ;
vo id Com_in i t (vo id) ;
vo id Calcu la te_sendWai t (unsigned char channel) ;
vo id Setup_Counter_Star tup (vo id) ;
vo id Setup_Counter_Master_Check (vo id) ;
vo id Setup_Counter_Slave_Scan (vo id) ;
vo id Setup_Counter_Slave_Check (vo id) ;
vo id Setup_Counter_Master (vo id) ;
vo id Setup_Counter_Slave (vo id) ;
vo id delay (unsigned i n t d) ;

#e n d i f

Code Segment C.2: Hardware.c

#inc lude " hardware . h "

/ / Booleans f o r i n t e r r u p t s
unsigned char waitToSend = 0 ;
unsigned char wai tToRece i ve = 0 ;

/ / Node i n f o
unsigned char t imeS lo t = 1 ;
unsigned char Sensor ;

/ / Wait t imes

284 Third Generation Firmware

i n t sendWait = 0 ;

vo id C l o c k _ i n i t (vo id)
{

i f CLOCKFREQUENCY == 1

/ / Se l e c t 1 MHz c l o c k
BCSCTL1 = CALBC1_1MHZ ;
DCOCTL = CALDCO_1MHZ;

#e n d i f
i f CLOCKFREQUENCY == 8

/ / Se l e c t 8 MHz c l o c k
BCSCTL1 = CALBC1_8MHZ ;
DCOCTL = CALDCO_8MHZ;

#e n d i f
i f CLOCKFREQUENCY == 12

/ / Se l e c t 8 MHz c l o c k
BCSCTL1 = CALBC1_12MHZ ;
DCOCTL = CALDCO_12MHZ ;

#e n d i f
i f CLOCKFREQUENCY == 16

/ / Se l e c t 8 MHz c l o c k
BCSCTL1 = CALBC1_16MHZ ;
DCOCTL = CALDCO_16MHZ ;

#e n d i f
}

vo id P o r t _ i n i t (vo id)
{

/ / A l l not connec ted I /O ’ s shou ld be s e t as
/ / OUTPUT f o r min imal c u r r e n t consumpt ion

/ / Port1 : Not connec ted
P1OUT = 0x00 ;
P1DIR = 0xFF ;
P1REN = 0xFF ;
P1SEL = 0x00 ;

/ / Port2 : Not connec ted
P2OUT = 0x00 ;
P2DIR = 0xFF ;
P2REN = 0xFF ;
P2SEL = 0x00 ;

/ / Port3 : D i g i t a l comm : I2C and pa r t SPI NRF i n t e r f a c e 1
P3OUT = (1<<I2C_SDA) | (1<<I2C_SCL) ;
P3DIR = (1<<I2C_SDA) | (1<<I2C_SCL) | (1<<NRF_SOMI) ;
P3DIR = ~P3DIR ;
P3REN = (1<<I2C_SDA) | (1<<I2C_SCL)

| (1<<NRF_SIMO) | (1<<NRF_SOMI) ;
P3REN = ~P3REN;
P3SEL = (1<<I2C_SDA) | (1<<I2C_SCL)

| (1<<NRF_SIMO) | (1<<NRF_SOMI) ;

Hardware 285

/ / Port4 : NRF c o n t r o l s i g n a l s
P4OUT = 0x00 ;
P4DIR = ~((1<<P4_CLK1) | (1<<NRF_DR1)) ;
P4REN = ~((1<<P4_CLK1) | (1<<NRF_DR1) | (1<<NRF_CS)) ;
P4SEL = 1<<NRF_DR1 ;

/ / Port5 : D i g i t a l communicat ion second pa r t SPI NRF i n t e r f a c e 1
/ / and SPI NRF i n t e r f a c e 2 + LED and c o n t r o l s i g n a l s
P5OUT = 0x00 ;
P5DIR = ~((1<<NRF_DR2) | (1<<NRF_SOMI2)) ;
P5REN = 0x00 ;
P5SEL = (1<<NRF_CLK) | (1<<NRF_SOMI2) | (1<<NRF_CLK2) ;

/ / Port6 : MPIO
P6OUT = 0x00 ;
P6DIR = 0xFF ;
P6REN = 0xFF ;
P6SEL = 0x00 ;

}

vo id Com_in i t (vo id)
{

/ / SPI i n t e r f a c e 1 : USCI A1
UCA1CTL1 |= UCSWRST;
UCA1CTL0 |= UCCKPH + UCMSB + UCMST + UCSYNC;
UCA1CTL1 |= UCSWRST + UCSSEL_2 ;

i f CLOCKFREQUENCY == 1

/ / Clock d e v i d e r = 1 => 1MHz
UCA1BR0 = 1 ;

#e n d i f
i f CLOCKFREQUENCY == 8

/ / Clock d e v i d e r = 8 => 1MHz
UCA1BR0 = 8 ;

#e n d i f
i f CLOCKFREQUENCY == 12

/ / Clock d e v i d e r = 12 => 1MHz
UCA1BR0 = 12;

#e n d i f
i f CLOCKFREQUENCY == 16

/ / Clock d e v i d e r = 16 => 1MHz
UCA1BR0 = 16;

#e n d i f
UCA1BR1 = 0 ;

/ / * * I n i t i a l i z e USCI s t a t e machine * *
UCA1CTL1 &= ~UCSWRST;

/ / SPI i n t e r f a c e 2 : USCI B1
UCB1CTL1 |= UCSWRST;
UCB1CTL0 |= UCCKPH + UCMSB + UCMST + UCSYNC;
UCB1CTL1 |= UCSWRST + UCSSEL_2 ;

286 Third Generation Firmware

i f CLOCKFREQUENCY == 1

/ / Clock d e v i d e r = 1 => 1MHz
UCB1BR0 = 1 ;

#e n d i f
i f CLOCKFREQUENCY == 8

/ / Clock d e v i d e r = 8 => 1MHz
UCB1BR0 = 8 ;

#e n d i f
i f CLOCKFREQUENCY == 12

/ / Clock d e v i d e r = 12 => 1MHz
UCB1BR0 = 12;

#e n d i f
i f CLOCKFREQUENCY == 16

/ / Clock d e v i d e r = 16 => 1MHz
UCB1BR0 = 16;

#e n d i f
UCB1BR1 = 0 ;

/ / * * I n i t i a l i z e USCI s t a t e machine * *
UCB1CTL1 &= ~UCSWRST;

/ / I2C : USCI B0
UCB0CTL1 |= UCSWRST;
UCB0CTL0 = UCMST + UCMODE_3 + UCSYNC;
UCB0CTL1 = UCSSEL_2 + UCSWRST;

i f CLOCKFREQUENCY == 1

/ / fSCL = SMCLK/3 = ~333kHz
UCB0BR0 = 3 ;

#e n d i f
i f CLOCKFREQUENCY == 8

/ / fSCL = SMCLK/18 = ~400kHz
UCB0BR0 = 18;

#e n d i f
i f CLOCKFREQUENCY == 12

/ / fSCL = SMCLK/27 = ~400kHz
UCB0BR0 = 27;

#e n d i f
i f CLOCKFREQUENCY == 16

/ / fSCL = SMCLK/36 = ~400kHz
UCB0BR0 = 36;

#e n d i f

UCB0BR1 = 0 ;
UCB0CTL1 &= ~UCSWRST; / / C lear SW rese t , resume op e ra t i on
IE2 |= UCB0TXIE | UCB0RXIE ; / / Enable TX/RX i n t e r r u p t

}

vo id Calcu la te_sendWai t (unsigned char channel)

Hardware 287

{
i f (channel == 1){

sendWait = (t imeSlo t - 1) * SLOTSIZE ;
}
e lse
{

sendWait = (t imeSlo t - (SLAVES+1))*SLOTSIZE ;
}

}

vo id Setup_Counter_Star tup ()
{

/ / Timer A : i n t e r r u p t depends on node number
TACCTL0 = CCIE ; / / TA0CCR0 i n t e r r u p t enable
TACCR0 = 3000; / / i n t e r r u p t f o r s t a r t u p delay
TACTL = TASSEL_1 + MC_1 ; / / ACLK , up mode

}

vo id Setup_Counter_Master_Check (vo id)
{

/ / Timer A : f i x e d i n t e r r u p t
TACCTL0 = CCIE ; / / TA0CCR0 i n t e r r u p t enable
TACCR0 = MASTERCHECKTIME; / / i n t e r r u p t t ime
TACTL = TASSEL_1 + MC_1 ; / / ACLK , up mode

/ / Timer B : DR1 I n t e r r u p t gene ra t i on
TBCCTL5 = CM_1 + CCIS_0 + CAP + CCIE ;
TBCTL = TBSSEL_2 + MC_2 ;

}

vo id Setup_Counter_Slave_Scan (vo id)
{

/ / Timer A : f i x e d i n t e r r u p t
TACCTL0 = CCIE ; / / TA0CCR0 i n t e r r u p t enable
TACCR0 = SLAVESCANTIME ; / / i n t e r r u p t t ime
TACCTL1 = 0 ;
TACCTL2 = 0 ;
TACTL = TASSEL_1 + MC_1 ; / / ACLK , up mode

/ / Timer B : DR1 I n t e r r u p t gene ra t i on
TBCCTL5 = CM_1 + CCIS_0 + CAP + CCIE ;
TBCTL = TBSSEL_2 + MC_2 ;

}

vo id Setup_Counter_Slave_Check (vo id)
{

/ / The f u n c t i o n assumes the t i m e r has been se tup
/ / as i n Setup_Counter_Slave . I t on ly s e t s the
/ / sendWait va lue h ighe r to a l low i t s s l o t to pass .
TACCTL1 = 0 ;
TACCR1 = sendWait + 2*SLOTSIZE ;

}

288 Third Generation Firmware

vo id Setup_Counter_Master (vo id)
{

/ / Timer A : 100 Hz r e s e t based on watch c r y s t a l :
TACCTL0 = CCIE ; / / TA0CCR0 i n t e r r u p t enable
TACCR0 = MEASUREINTERVAL ;
TACCTL1 = 0 ; / / TA0CCR1 i n t e r r u p t d i s a b l e
TACCR1 = sendWait ;
TACCTL2 = 0 ; / / TA0CCR2 i n t e r r u p t d i s a b l e
TACCR2 = rece i v eWa i t ;
TACTL = TASSEL_1 + MC_1 ; / / ACLK , up mode

/ / Timer B : DR1 I n t e r r u p t gene ra t i on
TBCCTL5 = CM_1 + CCIS_0 + CAP + CCIE ;
TBCTL = TBSSEL_2 + MC_2 ;

}

vo id Setup_Counter_Slave (vo id)
{

/ / Timer A : 100 Hz r e s e t based on watch c r y s t a l :
TACCTL0 = 0 ; / / TA0CCR0 i n t e r r u p t d i s a b l e
TACCR0 = MEASUREINTERVAL ;
TACCTL1 = CCIE ; / / TA0CCR1 i n t e r r u p t enable
TACCR1 = sendWait ;
TACCTL2 = CCIE ; / / TA0CCR2 i n t e r r u p t enable
TACCR2 = rece i v eWa i t ;
TACTL = TASSEL_1 + MC_1 ; / / ACLK , up mode

/ / Timer B : DR1 I n t e r r u p t gene ra t i on
TBCCTL5 = CM_1 + CCIS_0 + CAP + CCIE ;
TBCTL = TBSSEL_2 + MC_2 ;

}

/ / Delay f u n c t i o n .
vo id delay (unsigned i n t d) {

unsigned i ;
f o r (i = 0 ; i<d ; i ++) {

__no_opera t i on () ;
__no_opera t i on () ;

}
}

C.2 I2C

Code Segment C.3: I2C.h

/ / Va r i ab l e s

ex te rn v o l a t i l e unsigned char RxBu f f e r [1 0] ;

/ / Func t i ons

vo id Set_I2CAddress (unsigned char Address) ;

I2C 289

vo id Send_I2C (unsigned char TxData [] , unsigned char BytesToSend) ;
vo id Rece ive_ I2C (unsigned char BytesToReceive) ;

Code Segment C.4: I2C.c

#inc lude " hardware . h "
#inc lude " I2C . h "

/ / I2C TX v a r i a b l e s
unsigned char * PTxData ;
unsigned char TXByteCtr ;

/ / I2C RX v a r i a b l e s
unsigned char * PRxData ;
unsigned char RXByteCtr ;
v o l a t i l e unsigned char RxBu f f e r [1 0] ;

vo id Set_I2CAddress (unsigned char Address)
{

UCB0CTL1 |= UCSWRST; / / Enable SW r e s e t
UCB0I2CSA = Address ; / / Slave Address
UCB0CTL1 &= ~UCSWRST; / / C lear re se t , resume op e ra t i on
IE2 |= UCB0TXIE | UCB0RXIE ; / / Enable TX/RX i n t e r r u p t

}

vo id Send_I2C (unsigned char TxData [] , unsigned char BytesToSend)
{

PTxData = (unsigned char *) TxData ; / / TX ar ray s t a r t address
TXByteCtr = BytesToSend ; / / Load TX byte coun te r
whi le (UCB0CTL1 & UCTXSTP) ; / / Ensure s top c o n d i t i o n
UCB0CTL1 |= UCTR | UCTXSTT ; / / TX and s t a r t c o n d i t i o n
__low_power_mode_0 () ; / / Enter LPM0 w/ i n t e r r u p t s

/ / Remain in LPM0 u n t i l
/ / a l l data i s TX ’ d

}

vo id Rece ive_ I2C (unsigned char BytesToReceive)
{

PRxData = (unsigned char *) RxBu f f e r ; / / S t a r t o f RX b u f f e r
RXByteCtr = BytesToReceive ; / / Load RX byte coun te r
whi le (UCB0CTL1 & UCTXSTP) ; / / Ensure s top c o n d i t i o n
UCB0CTL1 &= ~UCTR; / / Set to r e c e i v e r mode
UCB0CTL1 |= UCTXSTT ; / / I2C s t a r t c o n d i t i o n
__low_power_mode_0 () ; / / Enter LPM0 w/ i n t e r r u p t s

/ / Remain in LPM0 u n t i l
/ / a l l data i s RX ’ d

}

/ / T r a n s m i t t i n g and r e c e i v i n g I2C data
#pragma v e c t o r = USCIAB0TX_VECTOR
_ _ i n t e r r u p t vo id USCIAB0TX_ISR (vo id)
{

i f (UCB0CTL1 & UCTR)
{

i f (TXByteCtr) / / Check TX byte coun te r
{

UCB0TXBUF = * PTxData++; / / Load TX b u f f e r

290 Third Generation Firmware

TXByteCtr - - ; / / Decrement TX byte coun te r
}
e lse
{

UCB0CTL1 |= UCTXSTP; / / I2C s top c o n d i t i o n
IFG2 &= ~UCB0TXIFG ; / / C lear USCI_B0 TX i n t f l a g
__ low_power_mode_o f f_on_ex i t () ; / / E x i t LPM0

}
}
e lse
{

RXByteCtr - - ; / / Decrement RX byte coun te r
i f (RXByteCtr)
{

* PRxData++ = UCB0RXBUF; / / Move RX data to PRxData
i f (RXByteCtr == 1) / / Only one byte l e f t ?

UCB0CTL1 |= UCTXSTP; / / Generate s top c o n d i t i o n
}
e lse
{

* PRxData = UCB0RXBUF; / / Move RX data to PRxData
__ low_power_mode_o f f_on_ex i t () ; / / E x i t LPM0

}
}

}

C.3 SPI

Code Segment C.5: SPI.h

/ / Func t i ons

vo id Send_SPI (unsigned char data) ;
unsigned char Receive_SPI (vo id) ;
unsigned char Receive_SPI2 (vo id) ;

Code Segment C.6: SPI.c

#inc lude " hardware . h "

vo id Send_SPI (unsigned char data)
{

/ / Wait f o r p r e v i o u s c h a r a c t e r to be f u l l y t r a n s m i t t e d
whi le ((SPIIFG & SPITXIFG) == 0) ;

/ / Put the new data in the b u f f e r
SPITXBUF = data ;
i f CLOCKFREQUENCY == 8

DELAYU (1 0) ;
#e n d i f
i f CLOCKFREQUENCY == 12

DELAYU (1 3) ;
#e n d i f

Fixed Point 291

i f CLOCKFREQUENCY == 16
DELAYU (1 5) ;

#e n d i f
}

unsigned char Receive_SPI (vo id)
{

SPIIFG &= ~SPIRXIFG ;
Send_SPI (’ x ’) ;

/ / wa i t f o r comple te r e c e p t i o n
whi le (! (SPIIFG & SPIRXIFG)) ;
r e t u r n SPIRXBUF ;

}

unsigned char Receive_SPI2 (vo id)
{

SPI2IFG &= ~SPI2RXIFG ;
Send_SPI (’ x ’) ;
whi le (! (SPI2IFG & SPI2RXIFG)) ;
r e t u r n SPI2RXBUF ;

}

C.4 Fixed Point

Code Segment C.7: FixedPoint.h

/ / Func t i ons

s h o r t Shor t fpMul t (s h o r t a , s h o r t b) ;

Code Segment C.8: FixedPoint.c

#inc lude " f i x e d P o i n t . h "
#inc lude " hardware . h "

s h o r t Shor t fpMul t (s h o r t a , s h o r t b)
{

/ / Declare r e t u r n v a r i a b l e
s h o r t c ;

/ / Use Hardware m u l t i p l i e r f o r 16 b i t by 16 b i t m u l t i p l i c a t i o n
MPYS = a ;
OP2 = b ;

/ / S h i f t r e s u l t i n t o f i x e d p o i n t fo rm
c = ((RESHI & 0x03FF) << 6) + ((RESLO & 0xFC00) >> 1 0) ;

/ / Return r e s u l t
r e t u r n c ;

}

292 Third Generation Firmware

C.5 Dynamic Protocol

Code Segment C.9: Dynamic.h

#i f n d e f DYNAMIC_H
#de f ine DYNAMIC_H

/ / Booleans f o r i n t e r r u p t s
ex te rn unsigned char check ingMaster ;
ex te rn unsigned char s cann i ng_ s l a v e s ;
ex te rn unsigned char waitForMaster ;

/ / T imes l o t & Node r o l e i n f o
ex te rn unsigned char i s _mas t e r ;
ex te rn unsigned char s l a ve_channe l ;
ex te rn unsigned char t i m e s l o t _ t a b l e [2 * SLAVES] ;
ex te rn unsigned char s l a v e s _ c o u n t ;

/ / Wait t imes
ex te rn unsigned i n t delayMasterDown ;

/ / Func t i ons i n dynamic . c
vo id Startup_Delay (vo id) ;
vo id Check_Master (vo id) ;
vo id Slave_Scan (vo id) ;
vo id I n i t _ S l a v e (vo id) ;
vo id Maste r_Con f l i c t _Check (vo id) ;
vo id Sla ve_Con f l i c t _Check (vo id) ;

#e n d i f

Code Segment C.10: Dynamic.c

#inc lude " hardware . h "
#inc lude " n r f2401 . h "

/ / Booleans f o r i n t e r r u p t s
unsigned char check ingMaster = 0 ;
unsigned char s cann i ng_ s l a v e s = 0 ;
unsigned char waitForMaster = 0 ;

/ / T imes l o t & Node r o l e i n f o
unsigned char i s _mas t e r = 0 ;
unsigned char s l a ve_channe l = 1 ;
unsigned char t i m e s l o t _ t a b l e [2 * SLAVES] ;
unsigned char s l a v e s _ c o u n t = 0 ;

/ / Wait t imes
unsigned i n t delayMasterDown ;

vo id Startup_Delay (vo id)
{

/ / Setup coun te r f o r c o r r e c t op e ra t i on
Setup_Counter_Star tup () ;

Dynamic Protocol 293

f o r (i n t i = 0 ; i <(Sensor & 0x1F) ; i ++)
{

/ / Wait f o r delay in LPM
__low_power_mode_3 () ;

}

/ / Stop t i m e r
TACTL = TASSEL_1 + MC_0 ;

}

vo id Check_Master (vo id)
{

/ / Con f ig RF f o r r e c e i v a l on master channel
Con f ig_S lave_Rece i ve () ;

/ / Set boolean
check ingMaster = 1 ;

/ / Setup coun te r f o r c o r r e c t op e ra t i on
Setup_Counter_Master_Check () ;

/ / A c t i v a t e r e c e i v e r
Sta r t _Rece i v e () ;

/ / Wait i n LPM f o r p roces s to comple te
__low_power_mode_3 () ;

}

vo id Slave_Scan (vo id)
{

/ / Set boolean
s cann i ng_ s l a v e s = 1 ;

/ / A c t i v a t e r e c i e v e r
Sta r t _Rece i v e () ;

/ / Wait i n LPM f o r p roces s to comple te
__low_power_mode_3 () ;

}

vo id I n i t _ S l a v e (vo id)
{

/ / C lear t i m e s l o t t a b l e to i n d i c a t e a l l channe ls are a v a i l a b l e
f o r (i n t i =0; i <2*SLAVES ; i ++){

t i m e s l o t _ t a b l e [i] = i +1;
}

/ / C lear the s l a v e count
s l a v e s _ c o u n t = 0 ;

/ / Setup coun te r f o r c o r r e c t op e ra t i on
Setup_Counter_Slave_Scan () ;

/ / Con f ig RF f o r r e c e i v a l on f i r s t s l a v e channel
Conf ig_Slave_Scan_Channel1 () ;

294 Third Generation Firmware

/ / Scan s l a v e s on the channel
Slave_Scan () ;

/ / I f channel i s f u l l , r epea t the op e ra t i on f o r
/ / the second channel and s e t the s l a v e channel
i f (s l a v e s _ c o u n t > SLAVES-1)
{

Conf ig_Slave_Scan_Channel2 () ;
Slave_Scan () ;
s l a ve_channe l = 2 ;

}
e lse
{

s l a ve_channe l = 1 ;
}

/ / Go through the t i m e s l o t t a b l e to f i n d an empty s l o t
f o r (i n t i =0; i <2*SLAVES ; i ++)
{

i f (t i m e s l o t _ t a b l e [i]< t imeS lo t)
{

t imeS lo t = t i m e s l o t _ t a b l e [i] ;
i = 2*SLAVES ;

}
}

/ / I f an a v a i l a b l e t i m e s l o t i s found
i f (t imeSlo t <255)
{

/ / Wait ing t ime u n t i l l a s l a v e becomes master :
/ / 52 ms + 20 ms * t i m e s l o t
delayMasterDown = 1700 + t imeS lo t * 654;

/ / Ca l cu l a t e wa i t i ng t ime u n t i l l t i m e s l o t i s reached
Calcu la te_sendWai t (s l a ve_channe l) ;

/ / Con f i gu re the coun t e r s f o r s l a v e mode
Setup_Counter_Slave () ;

/ / Con f i gu re RF f o r r e c e i v a l i n the master channel
Con f ig_S lave_Rece i ve () ;

}
}

vo id Maste r_Con f l i c t _Check (vo id)
{

/ / Con f ig RF ch ip f o r r e c e i v a l
Con f ig_S lave_Rece i ve () ;

/ / Set boolean
check ingMaster = 1 ;

/ / S t a r t r e c e i v i n g data
Sta r t _Rece i v e () ;

/ / Wait i n LPM f o r r e c e i v a l o r t imeou t

Dynamic Protocol 295

__low_power_mode_3 () ;

/ / I n i t i a l i z e node as s l a v e i f ano ther master i s de tec ted ,
/ / o t he rw i se r e c o n f i g RF ch ip f o r t r a n s m i t
i f (! i s _mas t e r)
{

I n i t _ S l a v e () ;
r f _ t x d a t a [0] = t imeS lo t ;
wa i tToRece i ve = 1 ;

} e lse {
Con f ig_Maste r_Transmi t () ;

}
}

vo id Sla ve_Con f l i c t _Check (vo id)
{

/ / C lear t i m e s l o t t a b l e to i n d i c a t e a l l channe ls are a v a i l a b l e
f o r (i n t i =0; i <2*SLAVES ; i ++){

t i m e s l o t _ t a b l e [i] = i +1;
}

/ / C lear the s l a v e count
s l a v e s _ c o u n t = 0 ;

/ / Con f ig RF ch ip f o r r e c e i v a l
i f (s l a ve_channe l == 1)
{

Conf ig_Slave_Scan_Channel1 () ;
}
e lse
{

Conf ig_Slave_Scan_Channel2 () ;
}

/ / Set boolean
s cann i ng_ s l a v e s = 1 ;

/ / Setup coun te r f o r c o r r e c t op e ra t i on
Setup_Counter_Slave_Check () ;

/ / Scan s l a v e s on the channel
Slave_Scan () ;

/ / Check i f the senso r s own s l o t i s s t i l l a v a i l a b l e
i f (t i m e s l o t _ t a b l e [t imeS lo t - 1] == 255)
{

/ / R e i n i t i a l i z e senso r node f o r o t he r s l a v e t i m e s l o t
t imeS lo t = 255;
I n i t _ S l a v e () ;
r f _ t x d a t a [0] = t imeS lo t ;
wa i tToRece i ve = 1 ;

}
e lse
{

/ / Reset t i m e r s e t t i n g s
Setup_Counter_Slave () ;

296 Third Generation Firmware

/ / Con f ig f o r t r a n s m i s s i o n
i f (s l a ve_channe l == 1)
{

Con f ig_Slave_Transmi t_Channe l1 () ;
} e lse
{

Con f ig_Slave_Transmi t_Channe l2 () ;
}

}
}

C.6 Accelerometer

Code Segment C.11: AccIO.h

/ *
*
* Standard r e g i s t e r and b i t d e f i n i t i o n s f o r the ST M i c r o e l e c t r o n i c s
* LIS302DL Acce l e rome te r .
*
* /

#i f n d e f _ _ l i s 3 0 2 d l
#de f ine _ _ l i s 3 0 2 d l
#e n d i f

/ *
* I2C ADDRESS
* /

#de f ine AccAddress 0x1C

/ *
* REGISTER ADDRESSES
* /

#de f ine WHO_AM_I (0 x0F) / / Dummy Re g i s t e r
#de f ine CTRL_REG1 (0 x20)
#de f ine CTRL_REG2 (0 x21)
#de f ine CTRL_REG3 (0 x22)
#de f ine HP_FILTER_RESET (0 x23) / / Dummy Re g i s t e r
#de f ine STATUS_REG (0 x27)
#de f ine OUTX (0 x29) / / X ou tpu t r e g i s t e r
#de f ine OUTY (0 x2B) / / Y ou tpu t r e g i s t e r
#de f ine OUTZ (0 x2D) / / Z ou tpu t r e g i s t e r
#de f ine FF_WU_CFG_1 (0 x30)
#de f ine FF_WU_SRC_1 (0 x31)
#de f ine FF_WU_THS_1 (0 x32)
#de f ine FF_WU_DURATION_1 (0 x33)
#de f ine FF_WU_CFG_2 (0 x34)
#de f ine FF_WU_SRC_2 (0 x35)
#de f ine FF_WU_THS_2 (0 x36)
#de f ine FF_WU_DURATION_2 (0 x37)

Accelerometer 297

#de f ine CLICK_CFG (0 x38)
#de f ine CLICK_SRC (0 x39)
#de f ine CLICK_THSY_X (0 x3B)
#de f ine CLICK_THSZ (0 x3C)
#de f ine CLICK_TIMELIMIT (0 x3D)
#de f ine CLICK_LATENCY (0 x3E)
#de f ine CLICK_WINDOW (0 x3F)

#de f ine Mult i read (0 x80) / / Add to read m u l t i p l e bytes

/ *
* REGISTER BITS
* /

/ / CTRL_REG1

#de f ine DR (0 x80) / / Data r a t e s e l e c t i o n .
#de f ine PD (0 x40) / / Power Down Con t r o l .
#de f ine FS (0 x20) / / Fu l l Scale s e l e c t i o n .
#de f ine STP (0 x10) / / S e l f Test Enable .
#de f ine STM (0 x08) / / S e l f Test Enable .
#de f ine ZEN (0 x04) / / Z a x i s enable .
#de f ine YEN (0 x02) / / Y a x i s enable .
#de f ine XEN (0 x01) / / X a x i s enable .

/ / CTRL_REG2

#de f ine SIM (0 x80) / / SPI S e r i a l I n t e r f a c e Mode s e l e c t i o n .
#de f ine BOOT (0 x40) / / Reboot memory con t en t .
#de f ine FDS (0 x10) / / F i l t e r e d Data S e l e c t i o n .
#de f ine HPFF_WU2 (0 x08) / /HPF enabled f o r FreeFa l l /WakeUp # 2 .
#de f ine HPFF_WU1 (0 x04) / /HPF enabled f o r FreeFa l l /WakeUp # 1 .
#de f ine HP_COEFF2 (0 x02) / /HPF cut - o f f f r equency c o n f i g u r a t i o n
#de f ine HP_COEFF1 (0 x01) / /HPF cut - o f f f r equency c o n f i g u r a t i o n

/ / CTRL_REG3

#de f ine IHL (0 x80) / / I n t e r r u p t a c t i v e high , low .
#de f ine PP_OD (0 x40) / / Push - p u l l / Open Drain on i n t e r r u p t pad .
#de f ine I2CFG2 (0 x20) / / Data Signal on I n t 2 pad c o n t r o l b i t s .
#de f ine I2CFG1 (0 x10) / / Data Signal on I n t 2 pad c o n t r o l b i t s .
#de f ine I2CFG0 (0 x08) / / Data Signal on I n t 2 pad c o n t r o l b i t s .
#de f ine I1CFG2 (0 x04) / / Data Signal on I n t 1 pad c o n t r o l b i t s .
#de f ine I1CFG1 (0 x02) / / Data Signal on I n t 1 pad c o n t r o l b i t s .
#de f ine I1CFG0 (0 x01) / / Data Signal on I n t 1 pad c o n t r o l b i t s .

/ / STATUS_REG

#de f ine ZYXOR (0 x80) / / X , Y and Z a x i s data o ve r run .
#de f ine ZOR (0 x40) / / Z a x i s data o ve r run .
#de f ine YOR (0 x20) / / Y a x i s data o ve r run .
#de f ine XOR (0 x10) / / X a x i s data o ve r run .
#de f ine ZYXDA (0 x08) / / X , Y and Z a x i s new data a v a i l a b l e .

298 Third Generation Firmware

#de f ine ZDA (0 x04) / / Z a x i s new data a v a i l a b l e .
#de f ine YDA (0 x02) / / Y a x i s new data a v a i l a b l e .
#de f ine XDA (0 x01) / / X a x i s new data a v a i l a b l e .

Code Segment C.12: Acc.h

/ / Va r i ab l e s

ex te rn unsigned char adata [] ;
ex te rn long acc [] ;

/ / Func t i ons

vo id A c c _ i n i t (vo id) ;
vo id readAcc (vo id) ;
vo id con ve r tAc c (vo id) ;
vo id F i l t e r A c c (vo id) ;

Code Segment C.13: Acc.c

#inc lude " acc . h "
#inc lude " I2C . h "
#inc lude " a c c i o . h "
#inc lude " c a l i b r a t i o n . h "
#inc lude " f i x e d P o i n t . h "
#inc lude " Kalman . h "

/ / A c c e l e r a t i o n v a r i a b l e s
unsigned char adata [3] ;
f i x ed8_24 acc [3] ;
f i x ed8_24 f i l t _ n o m [3] = { -2 .3728*BASE24 ,

1 . 929*BASE24 ,
-0 .5309*BASE24} ;

f i x ed8_24 f i l t _ d e n [4] = {0 .02565*BASE24 , -0 .01299*BASE24 ,
-0 .01299*BASE24 , 0 .02565*BASE24} ;

f i x ed8_24 ou tpu t [3] [3] = {{0 , 0 , 0} , {0 , 0 , 0} , {BASE24 , BASE24 , BASE24}} ;
f i x ed8_24 i n p u t [3] [3] = {{0 , 0 , 0} , {0 , 0 , 0} , {BASE24 , BASE24 , BASE24}} ;

vo id A c c _ i n i t (vo id)
{

unsigned char TxData [2] ;

/ / Set Slave address to a c ce l e r ome t e r
Set_I2CAddress (AccAddress) ;

/ / Wri te c o n t r o l bytes
TxData [0] = CTRL_REG1 ;
TxData [1] = PD | XEN | YEN | ZEN;
Send_I2C (TxData , 2) ;

}

vo id readAcc (vo id)
{

unsigned char TxData [1] ;

/ / Set s l a v e address to a c ce l e r ome t e r

Accelerometer 299

Set_I2CAddress (AccAddress) ;

/ / Per form read
TxData [0] = OUTX | Mul t i read ;
Send_I2C (TxData , 1) ;
Rece ive_ I2C (5) ;

/ / Ass ign va l ue s
adata [0] = - RxBu f f e r [2] ;
adata [1] = RxBu f f e r [0] ;
adata [2] = RxBu f f e r [4] ;

}

vo id con ve r tAc c (vo id)
{

s h o r t temp [3] ;

/ / Conver t t o long f o r Kalman f i l t e r
temp [0] = (signed char) adata [0] ;
temp [1] = (signed char) adata [1] ;
temp [2] = (signed char) adata [2] ;
temp [0] = Shor t fpMul t (temp [0] << 3 , 0x0A00) ;
temp [1] = Shor t fpMul t (temp [1] << 3 , 0x0A00) ;
temp [2] = Shor t fpMul t (temp [2] << 3 , 0x0A00) ;
acc [0] = temp [0] ;
acc [1] = temp [1] ;
acc [2] = temp [2] ;
acc [0] = (acc [0] << 14) + o f f a c c [0] ;
acc [1] = (acc [1] << 14) + o f f a c c [1] ;
acc [2] = (acc [2] << 14) + o f f a c c [2] ;

F i l t e r A c c () ;
}

vo id F i l t e r A c c (vo id) {

/ / apply d i g i t a l f i l t e r
f o r (i n t i =0; i <3; i ++){

f i x ed8_24 i n t e r m e d i a t e = Mult8_24 (f i l t _ d e n [0] , acc [i]) ;
f o r (i n t j =0; j <3; j ++){

i n t e r m e d i a t e = i n t e r m e d i a t e
+ Mult8_24 (f i l t _ d e n [j +1] , i n p u t [i] [j])

- Mult8_24 (f i l t _ n o m [j] , ou tpu t [i] [j]) ;
}
f o r (i n t j =2; j >0; j - -) {

i n p u t [i] [j] = i n p u t [i] [j - 1] ;
ou tpu t [i] [j] = ou tpu t [i] [j - 1] ;

}
i n p u t [i] [0] = acc [i] ;
ou tpu t [i] [0] = i n t e r m e d i a t e ;
acc [i] = i n t e r m e d i a t e ;

}
}

300 Third Generation Firmware

C.7 Magnetometer

Code Segment C.14: MagIO.h

/ *
*
* Standard r e g i s t e r and b i t d e f i n i t i o n s f o r the Yamaha
* YAS529 Magnetometer .
*
* /

#i f n d e f __yas529
#de f ine __yas529
#e n d i f

/ *
* I2C ADDRESS
* /

#de f ine MagAddress 0x2E

/ *
* REGISTER ADDRESSES
* /

#de f ine CMDR (0 x00) / / Measurement command r e g i s t e r
#de f ine XOFFSETR (0 x20) / / Rough o f f s e t X
#de f ine Y1OFFSETR (0 x40) / / Rough o f f s e t Y1
#de f ine Y2OFFSETR (0 x60) / / Rough o f f s e t Y2
#de f ine ICOILR (0 x80) / / I n i t i a l i z a t i o n c o i l r e g i s t e r
#de f ine CONFR (0 xC0) / / C o n f i g u r a t i o n r e g i s t e r
#de f ine DOUTR (0 xE0) / / D i g i t a l ou tpu t

/ *
* REGISTER BITS
* /

/ /CMDR

#de f ine NORMAL (0 x00) / / Normal magnet ic f i e l d measurement
#de f ine ROUGH (0 x01) / / Rough o f f s e t measurement
#de f ine NORMTEMP (0 x02) / / Normal + tempera tu re measurement
#de f ine EXTINP (0 x03) / / Ex t e rna l i n p u t p in measurement
#de f ine COILPLUS (0 x04) / / Normal wi th t e s t c o i l on (+)
#de f ine COILMIN (0 x0C) / / Normal wi th t e s t c o i l on (-)

/ / ICOILR

#de f ine COILE (0 x10) / / Co i l enable
#de f ine COILSEL0 (0 x01) / / Co i l s e l e c t b i t 0
#de f ine COILSEL1 (0 x02) / / Co i l s e l e c t b i t 1
#de f ine COILSEL2 (0 x04) / / Co i l s e l e c t b i t 2

#de f ine COILSEL_0 (0 x00) / / Co i l s e l e c t 0
#de f ine COILSEL_1 (0 x01) / / Co i l s e l e c t 1

Magnetometer 301

#de f ine COILSEL_2 (0 x02) / / Co i l s e l e c t 2
#de f ine COILSEL_3 (0 x03) / / Co i l s e l e c t 3
#de f ine COILSEL_4 (0 x04) / / Co i l s e l e c t 4
#de f ine COILSEL_5 (0 x05) / / Co i l s e l e c t 5
#de f ine COILSEL_6 (0 x06) / / Co i l s e l e c t 6
#de f ine COILSEL_7 (0 x07) / / Co i l s e l e c t 7

/ /CONFR

#de f ine RDSEL0 (0 x08) / / Read s e l e c t b i t 0
#de f ine RDSEL1 (0 x10) / / Read s e l e c t b i t 1

#de f ine RDSEL_NORM (0 x00) / / Se l e c t measurements r e s u l t s
#de f ine RDSEL_CAL (0 x08) / / Se l e c t c a l i b r a t i o n f o r read
#de f ine RDSEL_ICOIL (0 x10) / / Se l e c t i n i t c o i l r e g i s t e r

/ /DOUTR

#de f ine Res (0 x14)
#de f ine GPOR (0 x01) / / General purpose ou tpu t p in

Code Segment C.15: Mag.h

/ / Va r i ab l e s

ex te rn s h o r t mdata [3] ;
ex te rn long mag [3] ;

/ / Func t i ons

vo id Mag_ini t (vo id) ;
vo id readMag (vo id) ;
vo id convertMag (vo id) ;
vo id Fil terMag (vo id) ;

Code Segment C.16: Mag.c

#inc lude " mag . h "
#inc lude " mag . h "
#inc lude " I2C . h "
#inc lude " magio . h "
#inc lude " c a l i b r a t i o n . h "
#inc lude " hardware . h "
#inc lude " f i x e d P o i n t . h "
#inc lude " Kalman . h "

/ / Avoid Roughs f rom being read f rom f l a s h
/ /#d e f i n e FIRST

/ / Wr i t i ng roughs to f l a s h
/ /#d e f i n e SECOND

/ / C a l i b r a t i o n v a r i a b l e s
unsigned char CAL [9] ;
s h o r t b [9] ;

302 Third Generation Firmware

/ / Magnetic f i e l d v a r i a b l e s
s h o r t mdata [3] ;
f i x ed8_24 mag [3] ;
f i x ed8_24 Magf i l t_nom [3] = { -2 .3728*BASE24 ,

1 . 929*BASE24 ,
-0 .5309*BASE24 } ;

f i x ed8_24 Mag f i l t _den [4] = {0 .02565*BASE24 , -0 .01299*BASE24 ,
-0 .01299*BASE24 , 0 .02565*BASE24} ;

f i x ed8_24 Magoutput [3] [3] = {{0 , 0 , 0} , {0 , 0 , 0} ,
{BASE24 , BASE24 , BASE24}} ;

f i x ed8_24 Maginput [3] [3] = {{0 , 0 , 0} , {0 , 0 , 0} ,
{BASE24 , BASE24 , BASE24}} ;

vo id Mag_ini t (vo id)
{

unsigned char TxData [1] ;

/ / Set Slave address to magnetometer
Set_I2CAddress (MagAddress) ;

/ / I n i t i a l i z e r e g i s t e r s : w r i t e ze r o s
TxData [0] = ICOILR ;
Send_I2C (TxData , 1) ;
TxData [0] = CONFR;
Send_I2C (TxData , 1) ;

/ / A c t i v a t e i n i t i a l i z a t i o n c o i l s
f o r (unsigned char i = 0 ; i <8 ; i ++) {

TxData [0] = ICOILR | COILE | i ;
Send_I2C (TxData , 1) ;

TxData [0] = ICOILR | ((i +1) & 0x07) ;
Send_I2C (TxData , 1) ;

}

/ / Read f a c t o r y c a l i b r a t i o n
TxData [0] = CONFR | RDSEL_CAL ;
Send_I2C (TxData , 1) ;
Rece ive_ I2C (9) ;
CAL [0] = RxBu f f e r [0] ;
CAL [1] = RxBu f f e r [1] ;
CAL [2] = RxBu f f e r [2] ;
CAL [3] = RxBu f f e r [3] ;
CAL [4] = RxBu f f e r [4] ;
CAL [5] = RxBu f f e r [5] ;
CAL [6] = RxBu f f e r [6] ;
CAL [7] = RxBu f f e r [7] ;
CAL [8] = RxBu f f e r [8] ;

/ / Per form rough o f f s e t measurement
TxData [0] = CONFR | RDSEL_NORM;
Send_I2C (TxData , 1) ;
TxData [0] = CMDR | ROUGH;
Send_I2C (TxData , 1) ;
DELAYM (3) ;
Rece ive_ I2C (6) ;

Magnetometer 303

/ / Ca l cu l a t e rough o f f s e t s
rough [0] = (RxBu f f e r [5] & 0x1F) ;
rough [1] = (RxBu f f e r [3] & 0x1F) ;
rough [2] = (RxBu f f e r [1] & 0x1F) ;

/ / Wri te roughs to f l a s h
#i f d e f SECOND

WriteMagRough2Flash () ;
#e n d i f

/ / R e t r i e v e roughs f rom Flash (not the f i r s t t ime)
#i f n d e f FIRST

Ret r ieveRoughs () ;
#e n d i f

/ / Wri te the rough o f f s e t s to the r e g i s t e r s
TxData [0] = XOFFSETR | (rough [0] - 5) ;
Send_I2C (TxData , 1) ;
TxData [0] = Y1OFFSETR | (rough [1] - 5) ;
Send_I2C (TxData , 1) ;
TxData [0] = Y2OFFSETR | (rough [2] - 5) ;
Send_I2C (TxData , 1) ;

/ / Order mag to pe r f o rm f i r s t measurement
TxData [0] = CMDR | NORMAL;
Send_I2C (TxData , 1) ;

/ / Ca l cu l a t e f i x e d p o i n t r e p r e s e n t a t i o n
CalcF i xedPo in t (CAL , b) ;

}

vo id readMag (vo id)
{

unsigned char TxData [1] ;

/ / Set s l a v e address to magnetometer
Set_I2CAddress (MagAddress) ;

/ / Communicate v i a I2C
Rece ive_ I2C (6) ;

/ / Command mag to pe r f o rm new measurement f o r nex t read
TxData [0] = CMDR | NORMAL;
Send_I2C (TxData , 1) ;

/ / Declare f i x e d p o i n t v a r i a b l e s , s h o r t = 16 b i t v a r i a b l e .
s h o r t x , y , z ;

/ / Ca l cu l a t e f i x e d p o i n t r e p r e s e n t a t i o n and add rough o f f s e t
x = ((((rough [0] - 5) + (RxBu f f e r [4] & 0x07)) << 10)

| (RxBu f f e r [5] << 2)) - (15 << 1 0) ;
y = ((((rough [1] - 5) + (RxBu f f e r [2] & 0x07)) << 10)

| (RxBu f f e r [3] << 2)) - (15 << 1 0) ;
z = ((((rough [2] - 5) + (RxBu f f e r [0] & 0x07)) << 10)

| (RxBu f f e r [1] << 2)) - (15 << 1 0) ;

/ / Conver t the a x i s va l ue s i n t o the s tandard c o o r d i n a t e system

304 Third Generation Firmware

x = - x ;
s h o r t temp = z - y ;
z = y + z ;
y = temp ;

/ / Apply f a c t o r y c a l i b r a t i o n
mdata [0] = x

+ Shor t fpMul t (b [1] , y)
+ Shor t fpMul t (b [2] , z) ;

mdata [1] = Shor t fpMul t (b [3] , x)
+ Shor t fpMul t (b [4] , y)

+ Shor t fpMul t (b [5] , z) ;
mdata [2] = Shor t fpMul t (b [6] , x)

+ Shor t fpMul t (b [7] , y)
+ Shor t fpMul t (b [8] , z) ;

/ / Ass ign va l ue s
mdata [0] = -mdata [0] ;
mdata [1] = -mdata [1] ;
mdata [2] = mdata [2] ;

}

vo id convertMag (vo id)
{

/ / Conver t t o long f o r Kalman f i l t e r
mag [0] = mdata [0] ;
mag [1] = mdata [1] ;
mag [2] = mdata [2] ;
mag [0] = (mag [0] << 14) + o f fmag [0] ;
mag [1] = (mag [1] << 14) + o f fmag [1] ;
mag [2] = (mag [2] << 14) + o f fmag [2] ;

Fi l terMag () ;
}

vo id Fil terMag (vo id) {

/ / apply d i g i t a l f i l t e r
f o r (i n t i =0; i <3; i ++){

f i x ed8_24 i n t e r m e d i a t e = Mult8_24 (Mag f i l t _den [0] , mag [i]) ;
f o r (i n t j =0; j <3; j ++){

i n t e r m e d i a t e = i n t e r m e d i a t e
+ Mult8_24 (Mag f i l t _den [j +1] , Maginput [i] [j])

- Mult8_24 (Magf i l t_nom [j] , Magoutput [i] [j]) ;
}
f o r (i n t j =2; j >0; j - -) {

Maginput [i] [j] = Maginput [i] [j - 1] ;
Magoutput [i] [j] = Magoutput [i] [j - 1] ;

}
Maginput [i] [0] = mag [i] ;
Magoutput [i] [0] = i n t e r m e d i a t e ;
mag [i] = i n t e r m e d i a t e ;

}
}

Calibration 305

C.8 Calibration

Code Segment C.17: Calibration.h

/ / Va r i ab l e s

ex te rn unsigned char rough [] ;
ex te rn long o f f a c c [] ;
ex te rn long o f fmag [] ;
ex te rn long ga inacc [] ;
ex te rn long gainmag [] ;

/ / Func t i ons

vo id WriteSensorNumber2Flash (i n t number) ;
vo id WriteAccCal2Flash (vo id) ;
vo id WriteMagRough2Flash (vo id) ;
vo id WriteMagCal2Flash (vo id) ;
char Retr ieveSensorNumber (vo id) ;
vo id Retr ieveRoughs (vo id) ;
vo id Ret r i e veAccCa l (vo id) ;
vo id Retr ieveMagCal (vo id) ;
vo id CalcF i xedPo in t (unsigned char CAL [] , s h o r t * b) ;

Code Segment C.18: Calibration.c

#inc lude " hardware . h "
#inc lude " c a l i b r a t i o n . h "

/ / O f f s e t v a r i a b l e
#de f ine BASE24 16777216

/ / Flash memory l o c a t i o n s
#de f ine SENSOR 0x1000
#de f ine ACCOFF 0x1010
#de f ine ACCGAI 0x1020
#de f ine MAGROU 0x1030
#de f ine MAGOFF 0x1040
#de f ine MAGGAI 0x1050

/ / Flash p o i n t e r
char * F la sh_p t r ;

/ / C a l i b r a t i o n v a r i a b l e s
unsigned char rough [] = {0 , 0 , 0} ;
long o f f a c c [3] = { -0 .07 * BASE24 , -0 .05 * BASE24 , 0 .09 * BASE24} ;
long o f fmag [3] = { -0 .91 * BASE24 , -8 .12 * BASE24 , -6 .77 * BASE24} ;
long ga inacc [3] = {0 .89 * BASE24 , 0 .94 * BASE24 , 0 .91 * BASE24} ;
long gainmag [3] = {1 .03 * BASE24 , 1 .04 * BASE24 , 1 .06 * BASE24} ;

vo id WriteSensorNumber2Flash (i n t number) {
FCTL2 = FWKEY + FSSEL0 + FN1 ;
FCTL3 = FWKEY;
FCTL1 = FWKEY + WRT;

/ / Point to Sensor node number

306 Third Generation Firmware

Flash_p t r = (char *)SENSOR;

/ / Wri te to Flash seg
* F la sh_p t r = number ;

}

vo id WriteAccCal2Flash (vo id) {
FCTL2 = FWKEY + FSSEL0 + FN1 ;
FCTL3 = FWKEY;
FCTL1 = FWKEY + WRT;

/ / Point to s t a r t o f Acc c a l i b r a t i o n o f f s e t va l ue s
Flash_p t r = (char *)ACCOFF;

/ / Wri te o f f s e t s s e r i a l l y byte by byte
f o r (i n t i =0; i <3; i ++){

f o r (i n t j =3; j >=0; j - -) {
* F la sh_p t r++ = (char) (o f f a c c [i] >> (8 * j)) ;

}
}

/ / Point to s t a r t o f Acc c a l i b r a t i o n gain va l ue s
Flash_p t r = (char *) ACCGAI ;

/ / Wri te ga ins s e r i a l l y byte by byte
f o r (i n t i =0; i <3; i ++){

f o r (i n t j =3; j >=0; j - -) {
* F la sh_p t r++ = (char) (ga inacc [i] >> (8 * j)) ;

}
}

}

vo id WriteMagRough2Flash (vo id) {
FCTL2 = FWKEY + FSSEL0 + FN1 ;
FCTL3 = FWKEY;
FCTL1 = FWKEY + WRT;

/ / Point to s t a r t o f Mag rough o f f s e t c a l i b r a t i o n va l ue s
Flash_p t r = (char *) (MAGROU) ;

/ / Wri te rough o f f s e t s
f o r (i n t i =0; i <3; i ++){

* F la sh_p t r++ = rough [i] ;
}

}

vo id WriteMagCal2Flash (vo id) {
FCTL2 = FWKEY + FSSEL0 + FN1 ;
FCTL3 = FWKEY;
FCTL1 = FWKEY + WRT;

/ / Point to s t a r t o f Mag c a l i b r a t i o n o f f s e t va l ue s
Flash_p t r = (char *) (MAGOFF) ;

/ / Wri te o f f s e t s s e r i a l l y byte by byte
f o r (i n t i =0; i <3; i ++){

f o r (i n t j =3; j >=0; j - -) {

Calibration 307

* F la sh_p t r++ = (char) (o f fmag [i] >> (8 * j)) ;
}

}

/ / Point to s t a r t o f Mag c a l i b r a t i o n gain va l ue s
Flash_p t r = (char *) (MAGGAI) ;

/ / Wri te o f f s e t s s e r i a l l y byte by byte
f o r (i n t i =0; i <3; i ++){

f o r (i n t j =3; j >=0; j - -) {
* F la sh_p t r++ = (char) (gainmag [i] >> (8 * j)) ;

}
}

}

char Retr ieveSensorNumber (vo id) {
F la sh_p t r = (char *)SENSOR;
r e t u r n * F la sh_p t r ;

}

vo id Retr ieveRoughs (vo id) {
F la sh_p t r = (char *)MAGROU;
f o r (i n t i =0; i <3; i ++){

rough [i] = * F la sh_p t r++;
}

}

vo id Ret r i e veAccCa l (vo id) {
F la sh_p t r = (char *)ACCOFF;
f o r (i n t i =0; i <3; i ++){

o f f a c c [i] = 0 ;
f o r (i n t j =3; j >=0; j - -) {

o f f a c c [i] <<= 8 ;
o f f a c c [i] += * F lash_p t r++;

}
}
F lash_p t r = (char *) ACCGAI ;
f o r (i n t i =0; i <3; i ++){

ga inacc [i] = 0 ;
f o r (i n t j =3; j >=0; j - -) {

ga inacc [i] <<= 8 ;
ga inacc [i] += * F lash_p t r++;

}
}

}

vo id Retr ieveMagCal (vo id) {
F la sh_p t r = (char *)MAGOFF;
f o r (i n t i =0; i <3; i ++){

o f fmag [i] = 0 ;
f o r (i n t j =3; j >=0; j - -) {

o f fmag [i] <<= 8 ;
o f fmag [i] += * F lash_p t r++;

}
}
F lash_p t r = (char *)MAGGAI ;
f o r (i n t i =0; i <3; i ++){

308 Third Generation Firmware

gainmag [i] = 0 ;
f o r (i n t j =3; j >=0; j - -) {

gainmag [i] <<= 8 ;
gainmag [i] += * F lash_p t r++;

}
}

}

vo id CalcF i xedPo in t (unsigned char CAL [] , s h o r t * b){

/ / Temp f l o a t a r ray
f l o a t a [9] ;

/ / Ca l cu l a t e c a l i b r a t i o n va l ue s as f l o a t
a [0] = 1 ;
a [1] = ((CAL [0] & 0xFC) > >(2)) - 32 ;
a [1] /= 100;
a [2] = ((CAL [0] & 0x03) < <(2)) + ((CAL [1] & 0xC0) > >(6)) - 8 ;
a [2] /= 100;
a [3] = (CAL [1] & 0x3F) - 32 ;
a [3] /= 100;
a [4] = ((CAL [2] & 0xFC) > >(2)) - 32 ;
a [4] = a [4] / 100 + 0 . 7 ;
a [5] = ((CAL [2] & 0x03) < <(4)) + ((CAL [3] & 0xF0) > >(4)) - 32 ;
a [5] /= 100;
a [6] = ((CAL [3] & 0x0F) < <(2)) + ((CAL [4] & 0xC0) > >(6)) - 32 ;
a [6] /= 100;
a [7] = (CAL [4] & 0x3F) - 32 ;
a [7] /= 100;
a [8] = ((CAL [5] & 0xFE)>>1) - 64 ;
a [8] = a [8] / 100 + 1 . 3 ;

/ / Ca l cu l a t e f i x e d p o i n t r e p r e s e n t a t i o n
f o r (unsigned char i = 0 ; i <9; i ++) {

i f (a [i] <0){
a [i] = -a [i] ;
b [i] = 0x8000 ;

}
}
f l o a t t e s t = 16 ;
f o r (unsigned char i =1; i <16; i ++){

f o r (unsigned char j =0; j <9; j ++){
i f (a [j] >= t e s t) {

a [j] -= t e s t ;
b [j] |= 1<<(15- i) ;

}
}
t e s t /= 2 ;

}
f o r (unsigned char i = 0 ; i <9; i ++) {

i f (b [i] >> 15){
b [i] -= 0x8001 ;
b [i] ^= 0xFFFF ;

}
}

}

RF Transceiver 309

C.9 RF Transceiver

Code Segment C.19: nRF2401IO.h

/ *
*
* Standard r e g i s t e r and b i t d e f i n i t i o n s f o r the Nordic
* nRF2401 T r a n s c e i v e r .
*
* /

#i f n d e f __nr f2401
#de f ine __nr f2401
#e n d i f

/ / Nordic nRF2401 r e g i s t e r c o n f i g u r a t i o n

#de f ine RFTXMODE 0x00
#de f ine RFRXMODE 0x01

/ / c o n f i g b i t s 1 5 . . 8
#de f ine RFTWOCHANNELRX 0x80
#de f ine RFONECHANNELRX 0x00

#de f ine RFSHOCKBURST 0x40
#de f ine RFDIRECT 0x00

#de f ine RF1MBIT 0x20
#de f ine RF250KBIT 0x00

#de f ine RFXTAL4MHZ 0x00
#de f ine RFXTAL8MHZ 0x04
#de f ine RFXTAL12MHZ 0x08
#de f ine RFXTAL16MHZ 0x0C
#de f ine RFXTAL20MHZ 0x10

#de f ine RFPOWERM20DBM 0x00
#de f ine RFPOWERM10DBM 0x01
#de f ine RFPOWERM5DBM 0x02
#de f ine RFPOWER0DBM 0x03

#de f ine RFCRC16BIT 0x02
#de f ine RFCRC8BIT 0x00

#de f ine RFCRCENABLE 0x01
#de f ine RFCRCDISABLE 0x00

/ / c o n f i g b i t s 6 3 . . 2 4 : address f o r channel 1 ,
/ / 40 b i t s (5 bytes) , unused can be s e t to 0
#de f ine RFADDR1_1 0xBB
#de f ine RFADDR1_2 0xEE
#de f ine RFADDR1_3 0x55
#de f ine RFADDR1_4 0xFF
#de f ine RFADDR1_5 0x00

/ / c o n f i g b i t s 1 0 3 . . 6 4 address f o r channel 2 ,

310 Third Generation Firmware

/ / 40 b i t s (5 bytes) , unused can be s e t to 0
#de f ine RFADDR2_1 RFADDR1_1
#de f ine RFADDR2_2 RFADDR1_2
#de f ine RFADDR2_3 RFADDR1_3
#de f ine RFADDR2_4 RFADDR1_4
#de f ine RFADDR2_5 RFADDR1_5

Code Segment C.20: nRF2401.h

/ / RF channe ls

/ / 0 . . 1 2 7 = 2400 . . 2527MHz
#de f ine RFMASTERCHANNEL 100
#de f ine RFSLAVECHANNEL1 101

/ / Channel 2 must be 8 channe ls apar t i n mu l t i - channel op e ra t i on
#de f ine RFSLAVECHANNEL2 109

/ / (b i t s 2 3 . . 1 8) Addresswidth (max 40 = 5 bytes)
#de f ine RFADDRWIDTH 16

/ / c o n f i g b i t s 111 . . 104
/ / RF data packe t s :
/ / 1 byte = coun te r
/ / 1 byte = node ID
/ / 1 byte = Acce l e rome te r X- Value
/ / 1 byte = Acce l e rome te r Y- Value
/ / 1 byte = Acce l e rome te r Z- Value
/ / 2 bytes = Magnetometer X- Value + Rough O f f s e t
/ / 2 bytes = Magnetometer Y1 - Value + Rough O f f s e t
/ / 2 bytes = Magnetometer Y2 - Value + Rough O f f s e t
/ / TOTAL : 11 bytes = 88 b i t s
#de f ine RFDATAWIDTH1 88
/ / c o n f i g b i t s 119 . . 112
#de f ine RFDATAWIDTH2 RFDATAWIDTH1

#de f ine RFFRAMESIZE (RFDATAWIDTH1/ 8)

ex te rn unsigned char r f _ t x d a t a [RFFRAMESIZE] ;
ex te rn unsigned char r f _ r x d a t a [RFFRAMESIZE] ;
ex te rn unsigned s h o r t r f _ r x t i m e ;
ex te rn unsigned s h o r t r f _ t x t i m e ;
ex te rn v o l a t i l e unsigned char r f _ r x t i m e o u t f l a g ;

/ / Func t i ons
vo id con f i g_No rd i c (vo id) ;
vo id powerup_Nordic (vo id) ;
vo id powerdown_Nordic (vo id) ;
vo id t r an sm i t _No rd i c (vo id) ;
vo id Rece ive_Nord ic (vo id) ;
vo id Con f ig_Maste r_Transmi t (vo id) ;
vo id Con f ig_S lave_Rece i ve (vo id) ;
vo id Conf ig_Slave_Scan_Channel1 (vo id) ;
vo id Conf ig_Slave_Transmi t_Channe l1 (vo id) ;
vo id Conf ig_Slave_Scan_Channel2 (vo id) ;
vo id Conf ig_Slave_Transmi t_Channe l2 (vo id) ;
vo id Sta r t _Rece i v e (vo id) ;

RF Transceiver 311

vo id Stop_Receive (vo id) ;

Code Segment C.21: nRF2401.c

/ *
* RF code f o r Nordic nRF2401
*
* MSP430F2132 m i c r o c o n t r o l l e r I /O a l l o c a t i o n see hardware . h
* /

#inc lude " hardware . h "
#inc lude " n r f2401 . h "
#inc lude " n r f 2 4 0 1 i o . h "
#inc lude " SPI . h "

/ / d e f a u l t=TRANSMIT , 250 kb i t , 16 b i t CRC
cons t unsigned char n o r d i c _ c o n f i g [1 5]

={(RFMASTERCHANNEL<<1)|RFTXMODE,
RFONECHANNELRX | RFSHOCKBURST | RF250KBIT

| RFXTAL16MHZ | RFPOWER0DBM,
RFADDR1_1 , RFADDR1_2 , RFADDR1_3 , RFADDR1_4 , RFADDR1_5 ,
RFADDR2_1 , RFADDR2_2 , RFADDR2_3 , RFADDR2_4 , RFADDR2_5 ,
RFDATAWIDTH1 ,
RFDATAWIDTH2} ;

cons t unsigned char m a s t e r _ t r a n s m i t
= (RFMASTERCHANNEL<<1) | RFTXMODE;

cons t unsigned char s l a v e _ r e c e i v e
= (RFMASTERCHANNEL<<1) | RFRXMODE;

cons t unsigned char s la ve_scan_channe l1
= (RFSLAVECHANNEL1<<1) | RFRXMODE;

cons t unsigned char s l a v e _ t r a n s m i t _ c h a n n e l 1
= (RFSLAVECHANNEL1<<1) | RFTXMODE;

cons t unsigned char s la ve_scan_channe l2
= (RFSLAVECHANNEL2<<1) | RFRXMODE;

cons t unsigned char s l a v e _ t r a n s m i t _ c h a n n e l 2
= (RFSLAVECHANNEL2<<1) | RFTXMODE;

unsigned char r f _ t x d a t a [RFFRAMESIZE] ;
unsigned char r f _ r x d a t a [RFFRAMESIZE] ;

vo id con f i g_No rd i c (vo id)
{

i n t i ;

CS_POUT |= (1<<NRF_CS) ;
f o r (i =14; i >=0; i - -) / / MSB f i r s t
{

Send_SPI (n o r d i c _ c o n f i g [i]) ;
}
DELAYU (5) ; / / THIS DELAY NEEDED ! ! ! ! ! !
CS_POUT &= ~(1<<NRF_CS) ;

}

vo id powerup_Nordic (vo id)
{

/ / power up RF

312 Third Generation Firmware

PWRUP_POUT |= (1<<NRF_PWRUP) ;

/ / s t a r t u p delay (needed)
DELAYM (3) ;

}

vo id powerdown_Nordic (vo id)
{

/ / power down RF
PWRUP_POUT &= ~(1<<NRF_PWRUP) ;

}

vo id t r an sm i t _No rd i c (vo id)
{

i n t i ;

CE_POUT |= (1<<NRF_CE) ;
DELAYU (0) ;

/ / address - - MSB f i r s t
i f RFADDRWIDTH>=40

Send_SPI (RFADDR1_5) ;
#e n d i f
i f RFADDRWIDTH>=32

Send_SPI (RFADDR1_4) ;
#e n d i f
i f RFADDRWIDTH>=24

Send_SPI (RFADDR1_3) ;
#e n d i f
i f RFADDRWIDTH>=16

Send_SPI (RFADDR1_2) ;
#e n d i f
Send_SPI (RFADDR1_1) ;

/ / data
f o r (i =0; i<RFFRAMESIZE ; i ++)
{

Send_SPI (r f _ t x d a t a [i]) ;
}

DELAYU (5) ;
CE_POUT &= ~(1<<NRF_CE) ;

}

vo id Rece ive_Nord ic (vo id)
{

/ / unass ign SIMO pin
SPI_PSEL &= ~(1<<NRF_SIMO) ;
SPI_PDIR &= ~((1<<NRF_SIMO)|(1<<NRF_SOMI)) ;

/ / Clock out data
f o r (i n t i =0; i<RFFRAMESIZE ; i ++)
{

r f _ r x d a t a [i] = Receive_SPI () ;
}

/ / r e a s s i gn SIMO pin

RF Transceiver 313

SPI_PSEL |= (1<<NRF_SIMO) ;
SPI_PDIR |= ((1<<NRF_SIMO)|(1<<NRF_SOMI)) ;

}

vo id Con f ig_Maste r_Transmi t (vo id)
{

CS_POUT |= (1<<NRF_CS) ;
Send_SPI (m a s t e r _ t r a n s m i t) ;
DELAYU (5) ;
CS_POUT &= ~(1<<NRF_CS) ;

}

vo id Con f ig_S lave_Rece i ve (vo id)
{

CS_POUT |= (1<<NRF_CS) ;
Send_SPI (s l a v e _ r e c e i v e) ;
DELAYU (5) ;
CS_POUT &= ~(1<<NRF_CS) ;

}

vo id Conf ig_Slave_Scan_Channel1 (vo id)
{

CS_POUT |= (1<<NRF_CS) ;
Send_SPI (s l a ve_scan_channe l1) ;
DELAYU (5) ;
CS_POUT &= ~(1<<NRF_CS) ;

}

vo id Conf ig_Slave_Transmi t_Channe l1 (vo id)
{

CS_POUT |= (1<<NRF_CS) ;
Send_SPI (s l a v e _ t r a n s m i t _ c h a n n e l 1) ;
DELAYU (5) ;
CS_POUT &= ~(1<<NRF_CS) ;

}

vo id Conf ig_Slave_Scan_Channel2 (vo id)
{

CS_POUT |= (1<<NRF_CS) ;
Send_SPI (s l a ve_scan_channe l2) ;
DELAYU (5) ;
CS_POUT &= ~(1<<NRF_CS) ;

}

vo id Conf ig_Slave_Transmi t_Channe l2 (vo id)
{

CS_POUT |= (1<<NRF_CS) ;
Send_SPI (s l a v e _ t r a n s m i t _ c h a n n e l 2) ;
DELAYU (5) ;
CS_POUT &= ~(1<<NRF_CS) ;

}

vo id Sta r t _Rece i v e (vo id)
{

/ / enable Nordic r e c e i v e r
CE_POUT |= (1<<NRF_CE) ;

}

314 Third Generation Firmware

vo id Stop_Receive (vo id)
{

/ / d i s a b l e Nordic r e c e i v e r
CE_POUT &= ~(1<<NRF_CE) ;

}

C.10 Kalman

Code Segment C.22: Kalman.h

#de f ine BASE24 16777216
t ypede f long f i x ed8_24 ;

/ / Va r i ab l e s

ex te rn long acc [] ;
ex te rn long mag [] ;

/ / f u n c t i o n d e c l a r a t i o n s Kalman f i l t e r

f i x ed8_24 * f i l t e r u p d a t e (f i x ed8_24 * a c c e l e r a t i o n ,
f i x ed8_24 * magnet ic) ;

vo id e x t endedCo r r e c t i on (f i x ed8_24 * a c c e l e r a t i o n ,
f i x ed8_24 * magnet ic) ;

vo id Normal ize (f i x ed8_24 * acc , f i x ed8_24 * mag) ;
vo id HUpdate (vo id) ;
vo id KCalcu la te (vo id) ;
vo id i n v e r s e (vo id) ;
vo id StateUpdate (f i x ed8_24 * acc , f i x ed8_24 * mag) ;
vo id Covar ianceUpdate (vo id) ;
vo id Normal i zeQuater ion (vo id) ;
f i x ed8_24 Mult8_24 (f i x ed8_24 a , f i x ed8_24 b) ;
f i x ed8_24 InvSqr t8_24 (f i x ed8_24 x) ;

Code Segment C.23: Kalman.c

#inc lude " Kalman . h "
#inc lude " hardware . h "

/ / Kalman f i l t e r imp lemen ta t i on on MSP430

/ / I n i t i a l i z e i nd i c e s , s t a t e - and s e n s o r v e c t o r s i z e
i n t i , j , k ;
#de f ine n 4
#de f ine m 6

/ / Magnetic f i e l d con s t an t
cons t f i x ed8_24 Gy = (f i x ed8_24) (0 .403073309488957 * BASE24) ;
cons t f i x ed8_24 Gz = (f i x ed8_24)(-0 .91516769347350735 * BASE24) ;

/ / Declare f i l t e r parameters
f i x ed8_24 Q[n] = { (f i x ed8_24) (0 . 0 0 0 1 * BASE24) ,

Kalman 315

(f i x ed8_24) (0 . 0 0 0 1 * BASE24) ,
(f i x ed8_24) (0 . 0 0 0 1 * BASE24) ,

(f i x ed8_24) (0 . 0 0 0 1 * BASE24) } ;
f i x ed8_24 R [m] = { (f i x ed8_24) (0 . 0 1 * BASE24) ,

(f i x ed8_24) (0 . 0 1 * BASE24) ,
(f i x ed8_24) (0 . 0 1 * BASE24) ,

(f i x ed8_24) (0 . 0 2 * BASE24) ,
(f i x ed8_24) (0 . 0 2 * BASE24) ,

(f i x ed8_24) (0 . 0 2 * BASE24) } ;
f i x ed8_24 xhat [n] = {1 * BASE24 , 0 , 0 , 0} ;
f i x ed8_24 xhatPrev [n] = {1 * BASE24 , 0 , 0 , 0} ;
f i x ed8_24 P [n] [n] = {{1 * BASE24 , 0 , 0 , 0} ,

{0 , 1 * BASE24 , 0 , 0} ,
{0 , 0 , 1 * BASE24 , 0} ,
{0 , 0 , 0 , 1 * BASE24}} ;

f i x ed8_24 H[m] [n] = {{0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0}} ;

f i x ed8_24 K [n] [m] = {{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0}} ;

f i x ed8_24 PHT [n] [m] = {{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0}} ;

f i x ed8_24 temp [m] [m] = {{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0}} ;

f i x ed8_24 L [m] [m] = {{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0}} ;

f i x ed8_24 L in v [m] [m] = {{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0} ,
{0 , 0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0 , 0}} ;

f i x ed8_24 sum = 0 ;
f i x ed8_24 t [m] = {0 , 0 , 0 , 0 , 0 , 0} ;
f i x ed8_24 d e l t a [n] = {0 , 0 , 0 , 0} ;
f i x ed8_24 tau = 0 .8 * BASE24 ;
f i x ed8_24 speed [n] = {0 , 0 , 0 , 0} ;

f i x ed8_24 * f i l t e r u p d a t e (f i x ed8_24 * a c c e l e r a t i o n ,
f i x ed8_24 * magnet ic) {

/ / Normal ize senso r data
Normal ize (a c c e l e r a t i o n , magnet ic) ;

/ /DEBUG
/ / a c c e l e r a t i o n [0] = BASE24 ;
/ / a c c e l e r a t i o n [1] = 0 ;
/ / a c c e l e r a t i o n [2] = 0 ;
/ / magnet ic [0] = Gz ;
/ / magnet ic [1] = Gy ;
/ / magnet ic [2] = 0 ;

/ / Per form update
/ / A : P r e d i c t i o n wi th u n i t a r y m a t r i x

f o r (i =0; i<n ; i ++){
xha t [i] = xhatPrev [i] + Mult8_24 (tau , speed [i]) ;
P [i] [i] = P [i] [i] + Q[i] ;

}

316 Third Generation Firmware

/ / Ca l cu l a t e norm
f i x ed8_24 qNorm = 0 ;
f o r (i =0; i<n ; i ++){

qNorm = qNorm + Mult8_24 (xha t [i] , xha t [i]) ;
}

/ / Square r o o t
qNorm = InvSqr t8_24 (qNorm) ;

/ / Di v ide
f o r (i =0; i<n ; i ++){

xha t [i] = Mult8_24 (xha t [i] , qNorm) ;
}

/ /B : C o r r e c t i o n
e x t endedCo r r e c t i on (a c c e l e r a t i o n , magnet ic) ;

/ / Normal ize r e s u l t
Normal i zeQuater ion () ;

/ / Save speed
f o r (i =0; i<n ; i ++){

speed [i] = xhat [i] - xha tPrev [i] ;
xha tPrev [i] = xhat [i] ;

}

/ / r e t u r n s o l u t i o n
r e t u r n xha t ;

}

vo id e x t endedCo r r e c t i on (f i x ed8_24 * a c c e l e r a t i o n ,
f i x ed8_24 * magnet ic) {

/ / Determine H- m a t r i x wi th p a r t i a l d e r i v a t i v e s
HUpdate () ;

/ / Ca l cu l a t e Kalman - Gain
KCalcu la te () ;

/ / C o r r e c t
StateUpdate (a c c e l e r a t i o n , magnet ic) ;

/ / Covar iance
Covar ianceUpdate () ;

}

vo id Normal ize (f i x ed8_24 * acc , f i x ed8_24 * mag){

/ / Ca l cu l a t e norms
f i x ed8_24 AccNorm = 0 ;
f i x ed8_24 MagNorm = 0 ;
f o r (i =0; i <3; i ++){

AccNorm = AccNorm + Mult8_24 (acc [i] , acc [i]) ;
MagNorm = MagNorm + Mult8_24 (mag [i] , mag [i]) ;

}

Kalman 317

/ / Square r o o t
AccNorm = InvSqr t8_24 (AccNorm) ;
MagNorm = InvSqr t8_24 (MagNorm) ;

/ / Normal ize
acc [0] = Mult8_24 (acc [0] , AccNorm) ;
acc [1] = Mult8_24 (acc [1] , AccNorm) ;
acc [2] = Mult8_24 (acc [2] , AccNorm) ;
mag [0] = Mult8_24 (mag [0] , MagNorm) ;
mag [1] = Mult8_24 (mag [1] , MagNorm) ;
mag [2] = Mult8_24 (mag [2] , MagNorm) ;

}

vo id HUpdate (vo id) {

/ / P r e c a l c u l a t e some m u l t i p l i a t i o n s
f i x ed8_24 Gy0 = Mult8_24 (Gy , xha t [0]) << 1 ;
f i x ed8_24 Gy1 = Mult8_24 (Gy , xha t [1]) << 1 ;
f i x ed8_24 Gy2 = Mult8_24 (Gy , xha t [2]) << 1 ;
f i x ed8_24 Gy3 = Mult8_24 (Gy , xha t [3]) << 1 ;
f i x ed8_24 Gz0 = Mult8_24 (Gz , xha t [0]) << 1 ;
f i x ed8_24 Gz1 = Mult8_24 (Gz , xha t [1]) << 1 ;
f i x ed8_24 Gz2 = Mult8_24 (Gz , xha t [2]) << 1 ;
f i x ed8_24 Gz3 = Mult8_24 (Gz , xha t [3]) << 1 ;

/ / L i n e a r i z a t i o n f o r magnet ic f i e l d pa r t
H [0] [0] = Gy3 - Gz2 ;
H [0] [1] = Gy2 + Gz3 ;
H [0] [2] = Gy1 - Gz0 ;
H [0] [3] = Gy0 + Gz1 ;
H [1] [0] = Gy0 + Gz1 ;
H [1] [1] = -Gy1 + Gz0 ;
H [1] [2] = Gy2 + Gz3 ;
H [1] [3] = -Gy3 + Gz2 ;
H [2] [0] = -Gy1 + Gz0 ;
H [2] [1] = -Gy0 - Gz1 ;
H [2] [2] = Gy3 - Gz2 ;
H [2] [3] = Gy2 + Gz3 ;

/ / L i n e a r i z a t i o n f o r a c c e l e r a t i o n pa r t
H [3] [0] = - (xha t [2] << 1) ;
H [3] [1] = (xha t [3] << 1) ;
H [3] [2] = - (xha t [0] << 1) ;
H [3] [3] = (xha t [1] << 1) ;
H [4] [0] = (xha t [1] << 1) ;
H [4] [1] = (xha t [0] << 1) ;
H [4] [2] = (xha t [3] << 1) ;
H [4] [3] = (xha t [2] << 1) ;
H [5] [0] = (xha t [0] << 1) ;
H [5] [1] = - (xha t [1] << 1) ;
H [5] [2] = - (xha t [2] << 1) ;
H [5] [3] = (xha t [3] << 1) ;

}

vo id KCalcu la te (vo id) {

/ / Formula : K = P* t ranspose (H) * i n v e r s e (H*P* t ranspose (H)+R)

318 Third Generation Firmware

/ /PHT = P * Transpose (H)
f o r (i =0; i<n ; i ++){

f o r (j =0; j <m; j ++){
PHT [i] [j] = Mult8_24 (P [i] [0] , H [j] [0]) ;
/ / f o r (k=1; k<n ; k++){
/ / PHT [i] [j] = PHT [i] [j] + Mult8_24 (P [i] [k] , H [j] [k]) ;
/ / }
f o r (k=1; k<i +1; k++){

PHT [i] [j] = PHT [i] [j] + Mult8_24 (P [i] [k] , H [j] [k]) ;
}
f o r (k=i +1; k<n ; k++){

PHT [i] [j] = PHT [i] [j] + Mult8_24 (P [k] [i] , H [j] [k]) ;
}

}
}

/ / temp = H * PHT = H * P * t ranspose (H)
/ / [ONLY LOWER TRIANGLE => SYMMETRICAL MATRIX ! !]
f o r (i =0; i<m; i ++){

f o r (j =0; j <i +1; j ++){
temp [i] [j] = Mult8_24 (H[i] [0] , PHT [0] [j]) ;
f o r (k=1; k<n ; k++){

temp [i] [j] = temp [i] [j] + Mult8_24 (H[i] [k] , PHT [k] [j]) ;
}

}
}

/ / temp = temp + R = H * P * t ranspose (H) + R
f o r (i =0; i<m; i ++){

temp [i] [i] = temp [i] [i] + R [i] ;
}

/ / temp = i n v e r s e (temp)
i n v e r s e () ;

/ /K = PHT* temp = P* t ranspose (H) * i n v e r s e (H*P* t ranspose (H)+R)
f o r (i =0; i<n ; i ++){

f o r (j =0; j <m; j ++){
/ / Symmetric temp : [i] [j] w i th i =0 . .m-1 and j =0 . . i
K [i] [j] = Mult8_24 (PHT [i] [0] , temp [j] [0]) ;
f o r (k=1; k<j +1; k++){

K [i] [j] = K [i] [j] + Mult8_24 (PHT [i] [k] , temp [j] [k]) ;
}
f o r (k=j +1; k<m; k++){

K [i] [j] = K [i] [j] + Mult8_24 (PHT [i] [k] , temp [k] [j]) ;
}

}
}

}

vo id i n v e r s e (vo id) {

f l o a t x = 0 ;

/ / I n v e r s i o n o f a symmetr i c m a t r i x :
/ / Cholesky Decomposi t ion : temp = L * t ranspose (L) ,

Kalman 319

/ / L = lower t r i a n g u l a r m a t r i x
/ / i n v e r s e (L) by b a c k s u b s t i t u t i o n
/ / i n v e r s e (temp) = t ranspose (i n v e r s e (L)) * i n v e r s e (L)

/ / Cholesky decompos i t i on
f o r (i =0; i<m; i ++){

f o r (j =0; j <i ; j ++){
sum = 0 ;
f o r (k=0; k<j ; k++){

sum = sum + Mult8_24 (L [i] [k] , L [j] [k]) ;
}
L [i] [j] = Mult8_24 ((temp [i] [j] - sum) , t [j]) ;

}
sum = 0 ;
f o r (k=0; k<i ; k++){

sum = sum + Mult8_24 (L [i] [k] , L [i] [k]) ;
}
t [i] = InvSqr t8_24 (temp [i] [i] - sum) ;
x = t [i] ;
x = BASE24 / x ;
x = x * BASE24 ;
L [i] [i] = (f i x ed8_24) x ;

}

/ / I n v e r s i o n o f L
f o r (i =0; i<m; i ++){

/ / L i n v [i] [i] = 1 / L [i] [i]
x = L [i] [i] ;
x = BASE24 / x ;
x = x * BASE24 ;
L i n v [i] [i] = (f i x ed8_24) x ;

/ / L i n v [i] [j] = L in v [i] [i] * sum (L [i] [k] * L i n v [k] [j] , k=j . . i - 1)
f o r (j =0; j <i ; j ++){

sum = 0 ;
f o r (k=j ; k<i ; k++){

sum = sum - Mult8_24 (L [i] [k] , L i n v [k] [j]) ;
}
L i n v [i] [j] = Mult8_24 (L i n v [i] [i] , sum) ;

}
}

/ / i n v e r s e (temp) = t ranspose (i n v e r s e (L)) * i n v e r s e (L)
/ / [ONLY LOWER TRIANGLE => SYMMETRICAL MATRIX ! !]
f o r (i =0; i<m; i ++){

f o r (j =0; j <i +1; j ++){
temp [i] [j] = Mult8_24 (L i n v [i] [i] , L i n v [i] [j]) ;
f o r (k=i +1; k<m; k++){

temp [i] [j] = temp [i] [j] + Mult8_24 (L i n v [k] [i] , L i n v [k] [j]) ;
}

}
}

}

vo id StateUpdate (f i x ed8_24 * acc , f i x ed8_24 * mag){

320 Third Generation Firmware

/ / Formula : xha t = xhat + K * (z - h (xhat))

/ / temp = h (xhat)
f i x ed8_24 t2 = Mult8_24 (xha t [0] , xha t [0]) ;
f i x ed8_24 u2 = Mult8_24 (xha t [1] , xha t [1]) ;
f i x ed8_24 v2 = Mult8_24 (xha t [2] , xha t [2]) ;
f i x ed8_24 w2 = Mult8_24 (xha t [3] , xha t [3]) ;

f i x ed8_24 tu = Mult8_24 (xha t [0] , xha t [1]) ;
f i x ed8_24 t v = Mult8_24 (xha t [0] , xha t [2]) ;
f i x ed8_24 tw = Mult8_24 (xha t [0] , xha t [3]) ;
f i x ed8_24 uv = Mult8_24 (xha t [1] , xha t [2]) ;
f i x ed8_24 uw = Mult8_24 (xha t [1] , xha t [3]) ;
f i x ed8_24 vw = Mult8_24 (xha t [2] , xha t [3]) ;

t [0] = (Mult8_24 ((tw + uv) , Gy) + Mult8_24 ((uw - t v) , Gz)) << 1 ;
t [1] = Mult8_24 ((t2 - u2 + v2 - w2) , Gy)

+ (Mult8_24 ((tu + vw) , Gz) << 1) ;
t [2] = Mult8_24 ((t2 - u2 - v2 + w2) , Gz)

+ (Mult8_24 ((vw - tu) , Gy) << 1) ;

t [3] = (uw - t v) << 1 ;
t [4] = (tu + vw) << 1 ;
t [5] = t2 - u2 - v2 + w2 ;

/ / temp = z - temp = z - h (xhat)
f o r (i =0; i<m/ 2 ; i ++){

t [i] = mag [i] - t [i] ;
t [i+m/ 2] = acc [i] - t [i+m / 2] ;

}

/ / d e l t a = K * temp = K * (z - h (xhat))
f o r (i =0; i<n ; i ++){

d e l t a [i] = Mult8_24 (t [0] , K [i] [0]) ;
f o r (j =1; j <m; j ++){

d e l t a [i] = d e l t a [i] + Mult8_24 (t [j] , K [i] [j]) ;
}

}

/ / xha t = xhat + d e l t a = xhat + K * (z - h (xhat))
f o r (i =0; i<n ; i ++){

xha t [i] = xhat [i] + d e l t a [i] ;
}

}

vo id Covar ianceUpdate (vo id) {

/ / Formula : P = P - K * H * P

/ / temp = - K * H * P = - K * t ranspose (PHT)
f o r (i =0; i<n ; i ++){

f o r (j =0; j <i +1; j ++){
temp [i] [j] = - Mult8_24 (PHT [j] [0] , K [i] [0]) ;
f o r (k=1; k<m; k++){

temp [i] [j] = temp [i] [j] - Mult8_24 (PHT [j] [k] , K [i] [k]) ;
}

}

Kalman 321

}

/ /P = P - temp = P - K * H * P ()
f o r (i =0; i<n ; i ++){

f o r (j =0; j <i +1; j ++){
P [i] [j] = P [i] [j] + temp [i] [j] ;

}
}

}

vo id Normal i zeQuater ion (vo id) {

/ / Ca l cu l a t e norm
f i x ed8_24 qNorm = 0 ;
f o r (i =0; i<n ; i ++){

qNorm = qNorm + Mult8_24 (xha t [i] , xha t [i]) ;
}

/ / Square r o o t
qNorm = InvSqr t8_24 (qNorm) ;

/ / Di v ide
f o r (i =0; i<n ; i ++){

xha t [i] = Mult8_24 (xha t [i] , qNorm) ;
}

}

f i x ed8_24 Mult8_24 (f i x ed8_24 a , f i x ed8_24 b){

/ / Declare r e t u r n v a r i a b l e
f i x ed8_24 RES_LSB = 0 ;
f i x ed8_24 RES_MSB = 0 ;
char nega t i v e = 0 ;

/ / Sign t r o u b l e
i f (a < 0){

i f (b < 0){
a = -a ;
b = -b ;

}
e lse {

nega t i v e = 1 ;
a = -a ;

}
}
e lse {

i f (b < 0){
nega t i v e = 1 ;
b = -b ;

}
}

/ / Use Hardware m u l t i p l i e r f o r 4 16 b i t by 16 b i t m u l t i p l i c a t i o n s
MPYS = a >> 16;
OP2 = b >> 16;
RES_MSB = RESHI << 8 ;

322 Third Generation Firmware

RES_MSB += RESLO >> 8 ;
RES_LSB = RESLO << 8 ;
MPY = b >> 16;
OP2 = a ;
MAC = a >> 16;
OP2 = b ;
RES_LSB += RESHI << 8 ;
RES_LSB += RESLO >> 8 ;
RES_MSB += RESHI >> 8 ;

/ / S h i f t r e s u l t i n t o f i x e d p o i n t fo rm
RES_MSB = RES_MSB << 16;
RES_MSB += RES_LSB ;

/ / Sign t r o u b l e
i f (n ega t i v e == 1){

RES_MSB = -RES_MSB;
}

/ / Return r e s u l t
r e t u r n RES_MSB;

}

f i x ed8_24 InvSqr t8_24 (f i x ed8_24 x){
f i x ed8_24 x h a l f = x >> 1 ;
f l o a t t = x ;

/ / s t o r e f l o a t i n g - p o i n t b i t s i n i n t e g e r
long i = * (long *)& t ;

/ / i n i t i a l guess f o r Newton ’ s method
i = 0 x5f3759d5 - (i >> 1) ;
x = (f i x ed8_24) (* (f l o a t *)& i * BASE24 * 4096) ;

/ / One round o f Newton ’ s method
x = Mult8_24 (x , (0 x01800000 - Mult8_24 (x h a l f , Mult8_24 (x , x)))) ;
r e t u r n x ;

}

C.11 Main

Code Segment C.24: Auto.c

#inc lude " hardware . h "
#inc lude " dynamic . h "
#inc lude " n r f2401 . h "
#inc lude " c a l i b r a t i o n . h "
#inc lude " acc . h "
#inc lude " mag . h "
#inc lude <s t d l i b . h>

/ /#d e f i n e FIRST
#de f ine NUMBER 112

Main 323

/ / Counters
unsigned char coun te r ;
unsigned i n t c o n f l i c t _ c o u n t e r ;
unsigned i n t c o n f l i c t ;

vo id main (vo id) {

/ / Stop WatchDogTimer
WDTCTL = WDTPW | WDTHOLD;

/ / Delay program s t a r t
DELAYM (5) ;

#i f d e f FIRST
WriteSensorNumber2Flash (NUMBER) ;

#e n d i f

/ / I n i t i a l i z e c l o c k r e g i s t e r s
C l o c k _ i n i t () ;

/ / Setup d i g i t a l communic t ion
Com_in i t () ;

/ / Setup Pin I /O
P o r t _ i n i t () ;

/ / Turn LED on
LED_ON;

/ / Powerup and c o n f i g n r f
powerup_Nordic () ;
c on f i g_No rd i c () ;

/ / enable i n t e r r u p t s (=Set GIE b i t)
_ _ e n a b l e _ i n t e r r u p t () ;

/ / I n i t i a l i z e senso r s
A c c _ i n i t () ;
DELAYU(1 0 0) ;
Mag_ini t () ;

/ / I n i t i a l i z e coun te r
coun te r = 0 ;

/ / I n i t i a l i z e t i m e s l o t
t imeS lo t = 255;

/ / R e t r i e v e senso r number
Sensor = Retr ieveSensorNumber () ;

/ / I n i t i a l i z e c o n f l i c t c oun te r
c o n f l i c t _ c o u n t e r = 0 ;
srand (Sensor) ;
c o n f l i c t = (rand () & (0 x02FF)) + 512;

/ / Va r i ab l e s t a r t u p delay to avo id m u l t i p l e maste rs
Startup_Delay () ;

324 Third Generation Firmware

/ / Turn LED o f f
LED_OFF ;

/ / Check i f a master i s a c t i v e
Check_Master () ;

/ / I n i t i a l i z e coun t e r s and w i r e l e s s i n t e r f a c e
i f (i s _mas t e r)
{

/ / Setup t i m e r s
Setup_Counter_Master () ;

/ / Set n o r d i c i n r e c e i v e mode
Con f ig_Maste r_Transmi t () ;

} e lse
{

/ / I n i t i a l i z e s l a v e (de te rmine t i m e s l o t)
I n i t _ S l a v e () ;
wa i tToRece i ve = 1 ;

}

/ / Add senso r ID to packet
r f _ t x d a t a [1] = Sensor ;

whi le (1) {

/ / Read new senso r data
readMag () ;
readAcc () ;

/ / RF data packe t s :
/ / 1 byte = MASTER: modulo 256 package coun te r
/ / SLAVE : t i m e s l o t va lue
/ / 1 byte = senso r ID
/ / 1 byte = Acce l e rome te r X- Value
/ / 1 byte = Acce l e rome te r Y- Value
/ / 1 byte = Acce l e rome te r Z- Value
/ / 2 bytes = Magnetometer X- Value
/ / 2 bytes = Magnetometer Y- Value
/ / 2 bytes = Magnetometer Z- Value
/ / TOTAL : 11 bytes = 88 b i t s

i f (i s _mas t e r)
{

/ / Add coun te r to packet
r f _ t x d a t a [0] = coun te r ;

}
e lse
{

/ / Add t i m e s l o t to packet
r f _ t x d a t a [0] = t imeS lo t ;

}

/ / Add senso r data to b u f f e r

Main 325

r f _ t x d a t a [2] = adata [0] ;
r f _ t x d a t a [3] = adata [1] ;
r f _ t x d a t a [4] = adata [2] ;
r f _ t x d a t a [5] = mdata [0] ;
r f _ t x d a t a [6] = mdata [0] > >8;
r f _ t x d a t a [7] = mdata [1] ;
r f _ t x d a t a [8] = mdata [1] > >8;
r f _ t x d a t a [9] = mdata [2] ;
r f _ t x d a t a [10]= mdata [2] > >8;

/ / Enter LPM3 wi th i n t e r r u p t
__low_power_mode_3 () ;

/ / Transmi t datapackage
t r an sm i t _No rd i c () ;

/ / I n c remen t coun te r
coun te r++;
c o n f l i c t _ c o u n t e r ++;

/ / C o n f l i c t avo idance
i f (c o n f l i c t _ c o u n t e r == c o n f l i c t)
{

c o n f l i c t _ c o u n t e r = 0 ;
c o n f l i c t = (rand () & (0 x02FF)) + 512;
i f (i s _mas t e r)

Mas te r_Con f l i c t _Check () ;
e lse

Sla ve_Con f l i c t _Check () ;
}

i f (i s _mas t e r)
{

/ / B l ink LED
i f (! ((c oun te r & 0x10) == 0))

LED_TOGGLE ;
}
e lse
{

/ / B l ink LED
i f (s l a ve_channe l == 1)
{

/ / B l ink LED number o f t imes equal to TIMESLOT
i f (((c oun te r >> 4) < t imeS lo t) &

((c oun te r & 0x08) == 0x00))
LED_ON;

e lse
LED_OFF ;

}
e lse
{

/ / Occu l t LED number o f t imes equal to TIMESLOT
i f (((c oun te r >> 4) < (t imeS lo t - SLAVES)) &

((c oun te r & 0x08) == 0x00))
LED_OFF ;

326 Third Generation Firmware

e lse
LED_ON;

}

/ / I f c oun te r == 0 , resync wi th master
i f (c oun te r == 0)
{

/ / Con f ig Nordic f o r r e c e i v e and wai t f o r tu rnon
Con f ig_S lave_Rece i ve () ;
wa i tToRece i ve = 1 ;

}
e lse
{

/ / Wait f o r t i m e s l o t
waitToSend = 1 ;

}
}

}
}

/ / Timer0_A0 i n t e r r u p t s e r v i c e r o u t i n e
#pragma v e c t o r = TIMERA0_VECTOR
_ _ i n t e r r u p t vo id Timer0_A0 (vo id)
{

i f (check ingMaster)
{

/ / Unset boolean
check ingMaster = 0 ;

/ / Turn o f r e c e i v e r
Stop_Receive () ;

/ / Set boolean to become master
i s _mas t e r = 1 ;

} e lse i f (s c ann i ng_ s l a v e s)
{

/ / Unset boolean
s cann i ng_ s l a v e s = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

} e lse i f (wai tForMaster)
{

/ / Unset boolean
waitForMaster = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

/ / Stop & r e s e t t i m e r
TACTL = TASSEL_1 + MC_0 ; / / ACLK , s top mode
TACTL |= TACLR ;

Main 327

/ / Set boolean to become master
i s _mas t e r = 1 ;

/ / Reset coun te r and LED
coun te r = 0 ;
LED_OFF ;

/ / Setup node f o r master op e ra t i on
Setup_Counter_Master () ;
Con f ig_Maste r_Transmi t () ;

}

/ / Wake f rom s leep
__ low_power_mode_o f f_on_ex i t () ;

}

/ / Timer0_A1 i n t e r r u p t s e r v i c e r o u t i n e
#pragma v e c t o r = TIMERA1_VECTOR
_ _ i n t e r r u p t vo id Timer0_A1 (vo id)
{

/ / E f f i c i e n t swi tch - imp lemen ta t i on
sw i t ch (TAIV)
{

case 2 : / / TACCR1
i f (waitToSend)
{

/ / Unset boolean
waitToSend = 0 ;

/ / Return to main
__ low_power_mode_o f f_on_ex i t () ;

}
e lse i f (s c ann i ng_ s l a v e s)
{

/ / Unset boolean
s cann i ng_ s l a v e s = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

/ / Return to main
__ low_power_mode_o f f_on_ex i t () ;

}
break ;

case 4 : / / TACCR2
i f (wa i tToRece i ve)
{

/ / Unset boolean
wai tToRece i ve = 0 ;

/ / Set new boolean
waitForMaster = 1 ;

/ / Setup t i m e r to d e t e c t i f master i s down
TACCR0 = delayMasterDown ;
TACCTL0 = CCIE ;

328 Third Generation Firmware

/ / S t a r t r e c e i v i n g
Sta r t _Rece i v e () ;

}
e lse i f (s c ann i ng_ s l a v e s)
{

/ / Setup t i m e r to i n t e r r u p t
TACCTL1 = CCIE ;

}
break ;

case 10 : break ; / / Over f low not used
}

}

#pragma v e c t o r = TIMERB1_VECTOR
_ _ i n t e r r u p t vo id TIMERB1(vo id)
{

sw i t ch (TBIV)
{
case 10 :

i f (check ingMaster)
{

/ / Unset boolean
check ingMaster = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

/ / Unset master boolean
i s _mas t e r = 0 ;

/ / Wake f rom s leep
__ low_power_mode_o f f_on_ex i t () ;

}
e lse i f (s c ann i ng_ s l a v e s)
{

/ / Rece i ve data
Rece ive_Nord ic () ;

/ / I n d i c a t e t i m e s l o t i s i n use
i f (t i m e s l o t _ t a b l e [r f _ r x d a t a [0] - 1] != 255)
{

t i m e s l o t _ t a b l e [r f _ r x d a t a [0] - 1] = 255;
s l a v e s _ c o u n t++;

}
}
e lse i f (wai tForMaster)
{

/ / unse t boolean
waitForMaster = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

/ / Rece i ve coun te r
Rece ive_Nord ic () ;
c oun te r = r f _ r x d a t a [0] ;

Main 329

/ / Con f ig f o r t r a n s m i s s i o n
i f (s l a ve_channe l == 1)
{

Con f ig_Slave_Transmi t_Channe l1 () ;
} e lse
{

Con f ig_Slave_Transmi t_Channe l2 () ;
}

DELAYU(1 0 0) ;

/ / Wait f o r t i m e s l o t
waitToSend = 1 ;

/ / Reset t i m e r
TACCTL0 = 0 ;
TACCR0 = MEASUREINTERVAL ;
TAR = MEASUREINTERVAL ;

}
break ;

d e f a u l t : break ;
}

}

Code Segment C.25: KalmanAuto.c

#inc lude " hardware . h "
#inc lude " dynamic . h "
#inc lude " n r f2401 . h "
#inc lude " c a l i b r a t i o n . h "
#inc lude " acc . h "
#inc lude " mag . h "
#inc lude " Kalman . h "
#inc lude <s t d l i b . h>

/ /#d e f i n e FIRST
#de f ine NUMBER 100
/ /#d e f i n e SECOND

/ / O r i e n t a t i o n
long * qua te rn i on ;

/ / c oun t e r s
unsigned char coun te r ;
unsigned i n t c o n f l i c t _ c o u n t e r ;
unsigned i n t c o n f l i c t ;

vo id main (vo id) {

/ / Stop WatchDogTimer
WDTCTL = WDTPW | WDTHOLD;

/ / Delay program
DELAYM (5) ;

#i f d e f FIRST

330 Third Generation Firmware

WriteSensorNumber2Flash (NUMBER) ;
#e n d i f

/ / I n i t i a l i z e c l o c k r e g i s t e r s
C l o c k _ i n i t () ;

/ / Setup d i g i t a l communic t ion
Com_in i t () ;

/ / Setup Pin I /O
P o r t _ i n i t () ;

/ / Turn LED on
LED_ON;

/ / Powerup and c o n f i g n r f
powerup_Nordic () ;
c on f i g_No rd i c () ;

/ / enable i n t e r r u p t s (=Set GIE b i t)
_ _ e n a b l e _ i n t e r r u p t () ;

/ / I n i t i a l i z e senso r s
A c c _ i n i t () ;
DELAYU(1 0 0) ;
Mag_ini t () ;

#i f d e f SECOND
WriteAccCal2Flash () ;
WriteMagCal2Flash () ;

#e n d i f

/ / R e t r i e v e c a l i b r a t i o n
Ret r i e veAccCa l () ;
Retr ieveMagCal () ;

/ / I n i t i a l i z e coun te r
coun te r = 0 ;

/ / I n i t i a l i z e t i m e s l o t
t imeS lo t = 255;

/ / R e t r i e v e senso r number
Sensor = Retr ieveSensorNumber () ;

/ / I n i t i a l i z e c o n f l i c t c oun te r
c o n f l i c t _ c o u n t e r = 0 ;
srand (Sensor) ;
c o n f l i c t = (rand () & (0 x02FF)) + 512;

/ / Va r i ab l e s t a r t u p delay to avo id m u l t i p l e maste rs
Startup_Delay () ;

/ / Turn LED o f f
LED_OFF ;

/ / Check i f a master i s a c t i v e

Main 331

Check_Master () ;

/ / I n i t i a l i z e coun t e r s and w i r e l e s s i n t e r f a c e
i f (i s _mas t e r)
{

/ / Setup t i m e r s
Setup_Counter_Master () ;

/ / Set n o r d i c i n r e c e i v e mode
Con f ig_Maste r_Transmi t () ;

} e lse
{

/ / I n i t i a l i z e s l a v e (de te rmine t i m e s l o t)
I n i t _ S l a v e () ;
wa i tToRece i ve = 1 ;

}

/ / Add senso r ID to packet
r f _ t x d a t a [1] = Sensor ;

whi le (1) {

/ / Read new senso r data
readMag () ;
readAcc () ;

/ / Conver t senso r data to long
con ve r tAc c () ;
convertMag () ;

/ / RF data packe t s :
/ / 1 byte = MASTER: modulo 256 package coun te r
/ / SLAVE : t i m e s l o t va lue
/ / 1 byte = senso r ID
/ / 1 byte = Acce l e rome te r X- Value
/ / 1 byte = Acce l e rome te r Y- Value
/ / 1 byte = Acce l e rome te r Z- Value
/ / 2 bytes = Magnetometer X- Value
/ / 2 bytes = Magnetometer Y- Value
/ / 2 bytes = Magnetometer Z- Value
/ / TOTAL : 11 bytes = 88 b i t s

i f (i s _mas t e r)
{

/ / Add coun te r to packet
r f _ t x d a t a [0] = coun te r ;

}
e lse
{

/ / Add t i m e s l o t to packet
r f _ t x d a t a [0] = t imeS lo t ;

}

/ / Ca l cu l a t e Kalman update
qua te rn i on = f i l t e r u p d a t e (acc , mag) ;

332 Third Generation Firmware

/ / Add to s e n d b u f f e r
/ / r f _ t x d a t a [2] = qua te rn i on [0] >> 18 ;
/ / r f _ t x d a t a [3] = qua te rn i on [0] >> 10 ;
/ / r f _ t x d a t a [4] = qua te rn i on [1] >> 18 ;
/ / r f _ t x d a t a [5] = qua te rn i on [1] >> 10 ;
/ / r f _ t x d a t a [6] = qua te rn i on [2] >> 18 ;
/ / r f _ t x d a t a [7] = qua te rn i on [2] >> 10 ;
/ / r f _ t x d a t a [8] = qua te rn i on [3] >> 18 ;
/ / r f _ t x d a t a [9] = qua te rn i on [3] >> 10 ;
long a , b , c ;
i f (qua te rn i on [0] >0){

a = qua te rn i on [1] ;
b = qua te rn i on [2] ;
c = qua te rn i on [3] ;

}
e lse {

a = - qua te rn i on [1] ;
b = - qua te rn i on [2] ;
c = - qua te rn i on [3] ;

}
r f _ t x d a t a [2] = a >> 18;
r f _ t x d a t a [3] = a >> 10;
r f _ t x d a t a [4] = a >> 2 ;
r f _ t x d a t a [5] = b >> 18;
r f _ t x d a t a [6] = b >> 10;
r f _ t x d a t a [7] = b >> 2 ;
r f _ t x d a t a [8] = c >> 18;
r f _ t x d a t a [9] = c >> 10;
r f _ t x d a t a [10]= c >> 2 ;

/ / Enter LPM3 wi th i n t e r r u p t
__low_power_mode_3 () ;

/ / Transmi t datapackage
t r an sm i t _No rd i c () ;

/ / I n c remen t coun te r
coun te r++;
c o n f l i c t _ c o u n t e r ++;

/ / C o n f l i c t avo idance
i f (c o n f l i c t _ c o u n t e r == c o n f l i c t)
{

c o n f l i c t _ c o u n t e r = 0 ;
c o n f l i c t = (rand () & (0 x02FF)) + 512;
i f (i s _mas t e r)
{

Mas te r_Con f l i c t _Check () ;
}
e lse
{

S la ve_Con f l i c t _Check () ;
}

}

i f (i s _mas t e r)

Main 333

{

/ / B l ink LED
i f (! ((c oun te r & 0x10) == 0))
{

LED_TOGGLE ;
}

}
e lse
{

/ / B l ink LED
i f (s l a ve_channe l == 1)
{

/ / B l ink LED number o f t imes equal to TIMESLOT
i f (((c oun te r >> 4) < t imeS lo t) &

((c oun te r & 0x08) == 0x00))
LED_ON;

e lse
LED_OFF ;

}
e lse
{

/ / Occu l t LED number o f t imes equal to TIMESLOT
i f (((c oun te r >> 4) < (t imeS lo t - SLAVES)) &

((c oun te r & 0x08) == 0x00))
LED_OFF ;

e lse
LED_ON;

}

/ / I f c oun te r == 0 , resync wi th master
i f (c oun te r == 0)
{

/ / Con f ig Nordic f o r r e c e i v e and wai t f o r tu rnon
Con f ig_S lave_Rece i ve () ;
wa i tToRece i ve = 1 ;

}
e lse
{

/ / Wait f o r t i m e s l o t
waitToSend = 1 ;

}
}

}
}

/ / Timer0_A0 i n t e r r u p t s e r v i c e r o u t i n e
#pragma v e c t o r = TIMERA0_VECTOR
_ _ i n t e r r u p t vo id Timer0_A0 (vo id)
{

i f (check ingMaster)
{

/ / Unset boolean
check ingMaster = 0 ;

334 Third Generation Firmware

/ / Turn o f r e c e i v e r
Stop_Receive () ;

/ / Set boolean to become master
i s _mas t e r = 1 ;

} e lse i f (s c ann i ng_ s l a v e s)
{

/ / Unset boolean
s cann i ng_ s l a v e s = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

} e lse i f (wai tForMaster)
{

/ / Unset boolean
waitForMaster = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

/ / Stop & r e s e t t i m e r
TACTL = TASSEL_1 + MC_0 ; / / ACLK , s top mode
TACTL |= TACLR ;

/ / Set boolean to become master
i s _mas t e r = 1 ;

/ / Reset coun te r and LED
coun te r = 0 ;
LED_OFF ;

/ / Setup node f o r master op e ra t i on
Setup_Counter_Master () ;
Con f ig_Maste r_Transmi t () ;

}

/ / Wake f rom s leep
__ low_power_mode_o f f_on_ex i t () ;

}

/ / Timer0_A1 i n t e r r u p t s e r v i c e r o u t i n e
#pragma v e c t o r = TIMERA1_VECTOR
_ _ i n t e r r u p t vo id Timer0_A1 (vo id)
{

/ / E f f i c i e n t swi tch - imp lemen ta t i on
sw i t ch (TAIV)
{

case 2 : / / TACCR1
i f (waitToSend)
{

/ / Unset boolean
waitToSend = 0 ;

/ / Return to main

Main 335

__ low_power_mode_o f f_on_ex i t () ;
}
e lse i f (s c ann i ng_ s l a v e s)
{

/ / Unset boolean
s cann i ng_ s l a v e s = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

/ / Return to main
__ low_power_mode_o f f_on_ex i t () ;

}
break ;

case 4 : / / TACCR2
i f (wa i tToRece i ve)
{

/ / Unset boolean
wai tToRece i ve = 0 ;

/ / Set new boolean
waitForMaster = 1 ;

/ / Setup t i m e r to d e t e c t i f master i s down
TACCR0 = delayMasterDown ;
TACCTL0 = CCIE ;

/ / S t a r t r e c e i v i n g
Sta r t _Rece i v e () ;

}
break ;

case 10 : break ; / / Over f low not used
}

}

#pragma v e c t o r = TIMERB1_VECTOR
_ _ i n t e r r u p t vo id TIMERB1(vo id)
{

sw i t ch (TBIV)
{
case 10 :

i f (check ingMaster)
{

/ / Unset boolean
check ingMaster = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

/ / Unset master boolean
i s _mas t e r = 0 ;

/ / Wake f rom s leep
__ low_power_mode_o f f_on_ex i t () ;

}
e lse i f (s c ann i ng_ s l a v e s)
{

336 Third Generation Firmware

/ / Rece i ve data
Rece ive_Nord ic () ;

/ / I n d i c a t e t i m e s l o t i s i n use
i f (t i m e s l o t _ t a b l e [r f _ r x d a t a [0] - 1] != 255)
{

t i m e s l o t _ t a b l e [r f _ r x d a t a [0] - 1] = 255;
s l a v e s _ c o u n t++;

}
}
e lse i f (wai tForMaster)
{

/ / unse t boolean
waitForMaster = 0 ;

/ / Turn o f f r e c e i v e r
Stop_Receive () ;

/ / Rece i ve coun te r
Rece ive_Nord ic () ;
c oun te r = r f _ r x d a t a [0] ;

/ / Con f ig f o r t r a n s m i s s i o n
i f (s l a ve_channe l == 1)
{

Con f ig_Slave_Transmi t_Channe l1 () ;
} e lse
{

Con f ig_Slave_Transmi t_Channe l2 () ;
}

DELAYU(1 0 0) ;

/ / Wait f o r t i m e s l o t
waitToSend = 1 ;

/ / Reset t i m e r
TACCTL0 = 0 ;
TACCR0 = MEASUREINTERVAL ;
TAR = MEASUREINTERVAL ;

}
break ;

d e f a u l t : break ;
}

}

	Dankwoord
	Table of Contents
	List of Figures
	List of Tables
	List of Code Segments
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	Sensors
	Tracking Systems
	Mechanical Systems
	Optical Systems
	Magnetic Systems
	Acoustic Systems
	Inertial Systems

	Applications
	Animation
	Virtual Reality
	Biomechanical Analysis
	Industrial Applications

	Inertial Motion Tracking
	Inertial Sensors
	State of the Art
	Wireless Sensor Networks
	Motion Tracking Sensor Nodes
	Inertial Tracking Algorithms
	Motion Tracking Suit

	Scope and Goals
	Outline
	Publications
	References

	Filter Design
	Introduction
	Orientation of a Rigid Body
	Euler Angles
	Convention
	Rotation Matrices
	Relation to Body Rates
	Performance

	Quaternion
	Notation
	Operations
	Quaternions and Three Dimensional Rotation
	Relation to body rates
	Performance

	Conversion
	Euler Angles to Quaternion
	Quaternion to Euler Angles

	Kalman Filter
	System Model
	Filter Algorithm
	Prediction
	Correction
	Recursion

	Extended Kalman Filter
	System Model
	Linearisation
	Filter Algorithm

	Sigma Point Kalman Filters
	The Sigma Point Approach
	Filter Implementation
	Performance

	Hybrid Kalman Filters
	Adaptive Kalman Filters

	Orientation Estimator Design
	Filter Architecture
	MARG Filter
	MFG Filter

	Sensor Signals
	Sensor Output Model
	Calibration
	Sensor Output Processing

	Kalman Filter System Model
	State Vector
	Process Model
	Measurement Model
	Linearisation

	Orientation Estimation Procedure
	Prediction
	Correction

	Adaptive Filtering

	Parameter Estimation
	Digital Pre-Filter
	Filter Concept
	Sensor Output Filter Design

	Kalman Filter Parameters
	Measurement Noise Covariance
	Process Noise Covariance
	Feedback Gain

	Filter Simulation
	Step Response
	Tilt Step
	Heading Step

	Noise Response
	Simulated Noise
	Real Noise

	Motion Disturbance
	Adaptive Filtering
	Feedback Parameter

	Conclusion
	References

	System Design
	Introduction
	System Requirements
	Available Systems Overview

	Hardware
	General System Layout
	Sensor Node Build-up
	Base Station Build-up

	Second Generation
	Sensor Node
	Base Station

	Third Generation
	MFG Node
	MARG Node
	Base Station

	Fourth Generation
	Flexible Board
	UTCP

	Network Protocol
	Protocol Requirements
	Protocol Framework
	Master Operation
	Slave Operation
	Dynamic Implementation
	Additional Control Mechanisms
	Base Station Operation
	Extending Node Count
	Node Current Consumption
	Master Node
	Slave Nodes
	Dynamic Operation
	Collision Detection

	Protocol Performance
	Alternative Implementations
	Third Generation MARG Nodes
	Second Generation

	Firmware Filter Implementation
	Filter Choice
	Fixed Point Notation
	Format
	Multiplication
	Square Root

	Sensor Output Processing
	Calibration
	Accelerometer
	Magnetometer
	Digital Filter

	Kalman Filter Algorithm
	Simplifications
	Symmetric Matrices
	Symmetric Inversion

	Wireless Data Package
	Current Consumption
	MARG Extension

	Conclusion
	References

	Software
	Introduction
	Application Overview
	Software Structure
	Welcome Window
	Device Window
	Calibration Window

	Data Flow
	Data Collection
	Network Class
	Node Class
	Kalman Filter Class
	Visualisation

	Human Model
	Stickman Build-up
	Bone Offset
	Euler Angles
	Quaternion

	Bone Corrections
	Free Bones
	Fixed Bones
	Single Plane Constraint Bones
	Multiple Plane Constraint Bones

	World Model

	Conclusion
	References

	Measurements
	Introduction
	Individual Node Performance
	Linearity
	Heading
	Tilt

	Step Response
	Heading
	Tilt

	Angular Speed and Delay
	Heading
	Tilt

	Embedded Filter
	Step Response
	Angular Speed and Delay

	MARG Filter
	Step Response
	Angular Speed and Delay

	Full Body Tracking
	Dance Performance
	Various Movements
	Treadmill Exercises

	Conclusion
	References

	Conclusion & Outlook
	General Discussion
	Future Work

	Quaternion Decomposition
	Swing-Twist Decomposition
	Z-Axis Twist
	Arbitrary Twist

	Second Generation Firmware
	Hardware
	I2C
	SPI
	Fixed Point
	Accelerometer
	Magnetometer
	Gyroscope
	Calibration
	RF Transceiver
	Main

	Third Generation Firmware
	Hardware
	I2C
	SPI
	Fixed Point
	Dynamic Protocol
	Accelerometer
	Magnetometer
	Calibration
	RF Transceiver
	Kalman
	Main

